Photoinduced mechanism of formation and growth of polycyclic aromatic hydrocarbons in low-temperature environments via successive ethynyl radical additions.
نویسندگان
چکیده
A novel ethynyl addition mechanism (EAM) has been established computationally as a practicable alternative to high-temperature hydrogen-abstraction-C2H2-addition (HACA) sequences to form polycyclic aromatic hydrocarbon (PAH) -like species under low-temperature conditions in the interstellar medium and in hydrocarbon-rich atmospheres of planets and their moons. Initiated by an addition of the ethynyl radical (C2H) to the ortho-carbon atom of the phenylacetylene (C6H5C2H) molecule, the reactive intermediate loses rapidly a hydrogen atom, forming 1,2-diethynylbenzene. The latter can react with a second ethynyl molecule via addition to a carbon atom of one of the ethynyl side chains. A consecutive ring closure of the intermediate leads to an ethynyl-substituted naphthalene core. Under single-collision conditions as present in the interstellar medium, this core loses a hydrogen atom to form ethynyl-substituted 1,2-didehydronaphthalene. However, under higher pressures as present, for example, in the atmosphere of Saturn's moon Titan, three-body reactions can lead to a stabilization of this naphthalene-core intermediate. We anticipate this mechanism to be of great importance to form PAH-like structures in the interstellar medium and also in hydrocarbon-rich, low-temperature atmospheres of planets and their moons such as Titan. If the final ethynyl addition to 1,2-diethynylbenzene is substituted by a barrierless addition of a cyano (CN) radical, this newly proposed mechanism can even lead to the formation of cyano-substituted naphthalene cores in the interstellar medium and in planetary atmospheres.
منابع مشابه
Addition of one and two units of C2H to styrene: a theoretical study of the C10H9 and C12H9 systems and implications toward growth of polycyclic aromatic hydrocarbons at low temperatures.
Various mechanisms of the formation of naphthalene and its substituted derivatives have been investigated by ab initio G3(MP2,CC)∕B3LYP∕6-311G∗∗ calculations of potential energy surfaces for the reactions of one and two C(2)H additions to styrene combined with RRKM calculations of product branching ratios under single-collision conditions. The results show that for the C(2)H + styrene reaction,...
متن کاملA Free-Radical Pathway to Hydrogenated Phenanthrene in Molecular Clouds-Low Temperature Growth of Polycyclic Aromatic Hydrocarbons.
The hydrogen-abstraction/acetylene-addition mechanism has been fundamental to unravelling the synthesis of polycyclic aromatic hydrocarbons (PAHs) detected in combustion flames and carbonaceous meteorites like Orgueil and Murchison. However, the fundamental reaction pathways accounting for the synthesis of complex PAHs, such as the tricyclic anthracene and phenanthrene along with their dihydrog...
متن کاملFormation of benzene in the interstellar medium.
Polycyclic aromatic hydrocarbons and related species have been suggested to play a key role in the astrochemical evolution of the interstellar medium, but the formation mechanism of even their simplest building block--the aromatic benzene molecule--has remained elusive for decades. Here we demonstrate in crossed molecular beam experiments combined with electronic structure and statistical calcu...
متن کاملThe potential of low temperature extraction method for analysis of polycyclic aromatic hydrocarbons in refined olive and refined pomace olive oils by HPLC/FLD
Background and Objectives: A method was developed and validated for determining 15 polycyclic aromatic hydrocarbons (PAHs) in refined olive and refined pomace olive oils using high performance liquid chromatography coupled with a fluorescence detector. Materials and Methods: The sample preparation involved liquid–liquid extraction with organic solvent and low temperature clean-up. The low temp...
متن کاملLOW TEMPERATURE FORMATION OF NITROGEN-SUBSTITUTED POLYCYCLIC AROMATIC HYDROCARBONS (PANHs)—BARRIERLESS ROUTES TO DIHYDRO(iso)QUINOLINES
Meteorites contain bio-relevant molecules such as vitamins and nucleobases, which consist of aromatic structures with embedded nitrogen atoms. Questions remain over the chemical mechanisms responsible for the formation of nitrogen-substituted polycyclic aromatic hydrocarbons (PANHs) in extraterrestrial environments. By exploiting single collision conditions, we show that a radical mediated bimo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Chemical Society
دوره 130 41 شماره
صفحات -
تاریخ انتشار 2008