CXCR4 blockade attenuates hyperoxia-induced lung injury in neonatal rats.
نویسندگان
چکیده
BACKGROUND Lung inflammation is a key factor in the pathogenesis of bronchopulmonary dysplasia (BPD). Stromal-derived factor-1 (SDF-1) and its receptor chemokine receptor 4 (CXCR4) modulate the inflammatory response. It is not known if antagonism of CXCR4 alleviates lung inflammation in neonatal hyperoxia-induced lung injury. OBJECTIVE We aimed to determine whether CXCR4 antagonism would attenuate lung injury in rodents with experimental BPD by decreasing pulmonary inflammation. METHODS Newborn rats exposed to normoxia (room air, RA) or hyperoxia (FiO2 = 0.9) from postnatal day 2 (P2) to P16 were randomized to receive the CXCR4 antagonist, AMD3100 or placebo (PL) from P5 to P15. Lung alveolarization, angiogenesis and inflammation were evaluated at P16. RESULTS Compared to the RA pups, hyperoxic PL pups had a decrease in alveolarization, reduced lung vascular density and increased lung inflammation. In contrast, AMD3100-treated hyperoxic pups had improved alveolarization and increased angiogenesis. This improvement in lung structure was accompanied by a decrease in the macrophage and neutrophil counts in the bronchoalveolar lavage fluid and reduced lung myeloperoxidase activity. CONCLUSION CXCR4 antagonism decreases lung inflammation and improves alveolar and vascular structure in neonatal rats with experimental BPD. These findings suggest a novel therapeutic strategy to alleviate lung injury in preterm infants with BPD.
منابع مشابه
Asiaticoside attenuates hyperoxia-induced lung injury in vitro andin vivo
Objective(s): Asiaticoside (AS) displays anti-inflammation, and anti-apoptosis effect, but the role of AS in hyperoxia-induced lung injury (HILI) treatment is undefined. Therefore, the aim of this study was to investigate the effects of AS on HILI on premature rats and alveolar type II (AEC II) cells.Materials and Methods: Sprague-Dawley...
متن کاملRetracted: Time course changes of oxidative stress and inflammation in hyperoxia-induced acute lung injury in rats
متن کامل
Erythropoietin Attenuates Hyperoxia-Induced Lung Injury by Down-modulating Inflammation in Neonatal Rats
This study was done to determine whether recombinant human erythropoietin (rhEPO) treatment could attenuate hyperoxia-induced lung injury, and if so, whether this protective effect is mediated by the down-modulation of inflammation in neonatal rats. Newborn Sprague Dawley rat pups were subjected to 14 days of hyperoxia (>95% oxygen) within 10 hr after birth. Treatment with rhEPO significantly a...
متن کاملTime course changes of oxidative stress and inflammation in hyperoxia-induced acute lung injury in rats
Objective(s):Therapies with high levels of oxygen are commonly used in the management of critical care. However, prolonged exposure to hyperoxia can cause acute lung injury. Although oxidative stress and inflammation are purported to play an important role in the pathogenesis of acute lung injury, the exact mechanisms are still less known in the hyperoxic acute lung injury (HALI). Materials ...
متن کاملSubstance P attenuates hyperoxia‑induced lung injury in neonatal rats.
The aim of the study was to investigate the effects of substance P (SP) in hyperoxia‑induced lung injury in newborn rats and to elucidate its protective mechanism of action via the sonic hedgehog (SHH) signaling pathway. Twelve‑hour‑old neonatal Sprague‑Dawley rats were randomly divided into one of four groups: air, hyperoxia, air + SP and hyperoxia + SP. In a separate set of experiments, the n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neonatology
دوره 107 4 شماره
صفحات -
تاریخ انتشار 2015