A Monte Carlo approach to generator portfolio planning and carbon emissions assessments of systems with large penetrations of variable renewables
نویسندگان
چکیده
A new generator portfolio planning model is described that is capable of quantifying the carbon emissions associated with systems that include very high penetrations of variable renewables. The model combines a deterministic renewable portfolio planning module with a Monte Carlo simulation of system operation that determines the expected least-cost dispatch from each technology, the necessary reserve capacity, and the expected carbon emissions at each hour. Each system is designed to meet a maximum loss of load expectation requirement of 1 day in 10 years. The present study includes wind, centralized solar thermal, and rooftop photovoltaics, as well as hydroelectric, geothermal, and natural gas plants. The portfolios produced by the model take advantage of the aggregation of variable generators at multiple geographically disperse sites and the incorporation of meteorological and load forecasts. Results are presented from a model run of the continuous two-year period, 2005e2006 in the California ISO operating area. A low-carbon portfolio is produced for this system that is capable of achieving an 80% reduction in electric power sector carbon emissions from 2005 levels and supplying over 99% of the annual delivered load with non-carbon sources. A portfolio is also built for a projected 2050 system, which is capable of providing 96% of the delivered electricity from non-carbon sources, despite a projected doubling of the 2005 system peak load. The results suggest that further reductions in carbon emissions may be achieved with emerging technologies that can reliably provide large capacities without necessarily providing positive net annual energy generation. These technologies may include demand response, vehicle-to-grid systems, and large-scale energy storage. 2011 Elsevier Ltd. All rights reserved.
منابع مشابه
Incorporating short-term operational plant constraints into assessments of future electricity generation portfolios
This paper presents a post-processing extension to a Monte-Carlo based generation planning tool in order to assess the short-term operational implications of different possible future generation portfolios. This extension involves running promising portfolios through a year of economic dispatch at 30 minute intervals whilst considering operational constraints and associated costs including mini...
متن کاملAssessing the value of wind generation in future carbon constrained electricity industries
This paper employs a novel Monte-Carlo based generation portfolio assessment tool to explore the implications of increasing wind penetration and carbon prices within future electricity generation portfolios under considerable uncertainty. This tool combines optimal generation mix techniques with Monte Carlo simulation and portfolio analysis methods to determine expected overall generation costs...
متن کاملThe carbon abatement potential of high penetration intermittent renewables † Elaine
The carbon abatement potentials of wind turbines, photovoltaics, and concentrating solar power plants were investigated using dispatch simulations overCaliforniawith 2005–06meteorological and load data. A parameterization of the simulation results is presented that provides approximations of both lowpenetration carbon abatement rates and maximum carbon abatement potentials based on the temporal...
متن کاملProbabilistic Multi Objective Optimal Reactive Power Dispatch Considering Load Uncertainties Using Monte Carlo Simulations
Optimal Reactive Power Dispatch (ORPD) is a multi-variable problem with nonlinear constraints and continuous/discrete decision variables. Due to the stochastic behavior of loads, the ORPD requires a probabilistic mathematical model. In this paper, Monte Carlo Simulation (MCS) is used for modeling of load uncertainties in the ORPD problem. The problem is formulated as a nonlinear constrained mul...
متن کاملDose Calculations for Lung Inhomogeneity in High-Energy Photon Beams and Small Beamlets: A Comparison between XiO and TiGRT Treatment Planning Systems and MCNPX Monte Carlo Code
Introduction Radiotherapy with small fields is used widely in newly developed techniques. Additionally, dose calculation accuracy of treatment planning systems in small fields plays a crucial role in treatment outcome. In the present study, dose calculation accuracy of two commercial treatment planning systems was evaluated against Monte Carlo method. Materials and Methods Siemens Once or linea...
متن کامل