O2-dependent methionine auxotrophy in Cu,Zn superoxide dismutase-deficient mutants of Saccharomyces cerevisiae.

نویسندگان

  • E C Chang
  • D J Kosman
چکیده

Mutant strains of the yeast Saccharomyces cerevisiae which lack functional Cu,Zn superoxide dismutase (SOD-1) do not grow aerobically unless supplemented with methionine. The molecular basis of this O2-dependent auxotrophy in one of the mutants, Dscd1-1C, has been investigated. Sulfate supported anaerobic but not aerobic mutant growth. On the other hand, cysteine and homocysteine supported aerobic growth while serine, O-acetylserine, and homoserine did not, indicating that the interconversion of cysteine and methionine (and homocysteine) was not impaired. Thiosulfate (S2O3(2-] and sulfide (S2-) also supported aerobic growth; the activities of thiosulfate reductase and sulfhydrylase in the aerobic mutant strain were at wild-type levels. Although the levels of SO4(2-) and adenosine-5'-sulfate (the first intermediate in the SO4(2-) assimilation pathway) were elevated in the aerobically incubated mutant strain, this condition could be attributed to a decrease in protein synthesis caused by the de facto sulfur starvation and not to a block in the pathway. Therefore, the activation of SO4(2-) (to form 3'-phosphoadenosine-5'-phosphosulfate) appeared to be O2 tolerant. Sulfite reductase activity and substrate concentrations [( NADPH] and [SO3(2-)]) were not significantly different in aerobically grown mutant cultures and anaerobic cultures, indicating that SOD-1- mutant strains could reductively assimilate sulfur oxides. However, the mutant strain exhibited an O2-dependent sensitivity to SO3(2-) concentrations of less than 50 microM not exhibited by any SOD-1+ strain or by SOD-1- strains supplemented with a cytosolic O2(-)-scavenging activity. This result suggests that the aerobic reductive assimilation of SO4(2-) at the level of SO3(2-) may generate a cytotoxic compound(s) which persists in SOD-(1-) yeast strains.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Yeast as a biosensor for antioxidants: simple growth tests employing a Saccharomyces cerevisiae mutant defective in superoxide dismutase.

Mutants of Saccharomyces cerevisiae devoid of Cu,Zn-superoxide dismutase are hypersensitive to a range of oxidants, hyperbaric oxygen and hyperosmotic media, show lysine and methionine auxotrophy when grown under the atmosphere of air and have a shortened replicative life span when compared to the wild-type strain. Ascorbate and other antioxidants can ameliorate these defects, which may be a ba...

متن کامل

Null mutants of Saccharomyces cerevisiae Cu,Zn superoxide dismutase: characterization and spontaneous mutation rates.

Deletion-replacement mutations of the Saccharomyces cerevisiae Cu,Zn superoxide dismutase gene were constructed. They were exquisitely sensitive to redox cycling drugs and showed slight sensitivity to other agents. The aerobic spontaneous mutation rate was three- to fourfold higher in sod1 delta 1 mutants, while the anaerobic rate was similar to that of the wild type.

متن کامل

Oxidative protein damage causes chromium toxicity in yeast.

Oxidative damage in microbial cells occurs during exposure to the toxic metal chromium, but it is not certain whether such oxidation accounts for the toxicity of Cr. Here, a Saccharomyces cerevisiae sod1Delta mutant (defective for the Cu,Zn-superoxide dismutase) was found to be hypersensitive to Cr(VI) toxicity under aerobic conditions, but this phenotype was suppressed under anaerobic conditio...

متن کامل

Antioxidant functions required for insusceptibility of Saccharomyces cerevisiae to tetracycline antibiotics.

Cu,Zn superoxide dismutase (Sod1) is required for insusceptibility of Saccharomyces cerevisiae to oxytetracycline (OTC). Here we report that Sod1 is also required for insusceptibility to doxycycline (DOX). Furthermore, among a range of antioxidant and redox balance mutants, mac1 and ctr1 deletion strains exhibited marked sensitization to OTC and DOX. Certain mutants exhibited a slight sensitivi...

متن کامل

Cu, Zn superoxide dismutase and NADP(H) homeostasis are required for tolerance of endoplasmic reticulum stress in Saccharomyces cerevisiae.

Genome-wide screening for sensitivity to chronic endoplasmic reticulum (ER) stress induced by dithiothreitol and tunicamycin (TM) identified mutants deleted for Cu, Zn superoxide dismutase (SOD) function (SOD1, CCS1) or affected in NADPH generation via the pentose phosphate pathway (TKL1, RPE1). TM-induced ER stress led to an increase in cellular superoxide accumulation and an increase in SOD1 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 172 4  شماره 

صفحات  -

تاریخ انتشار 1990