Kinetics of a twinning step

نویسندگان

  • Lifeng Liu
  • Anna Vainchtein
  • YangYang Wang
چکیده

We study kinetics of a step propagating along a twin boundary in a cubic lattice undergoing an antiplane shear deformation. To model twinning, we consider a piecewise quadratic double-well interaction potential with respect to one component of the shear strain and harmonic interaction with respect to another. We construct semi-analytical traveling wave solutions that correspond to a steady step propagation and obtain the kinetic relation between the applied stress and the velocity of the step. We show that this relation strongly depends on the width of the spinodal region where the double-well potential is nonconvex and on the material anisotropy parameter. In the limiting case when the spinodal region degenerates to a point, we construct new solutions that extend the kinetic relation obtained in the earlier work of Celli, Flytzanis and Ishioka into the low-velocity regime. Numerical simulations suggest stability of some of the obtained solutions, including low-velocity step motion when the spinodal region is sufficiently wide. When the applied stress is above a certain threshold, nucleation and steady propagation of multiple steps are observed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Study of Blast Initiation of Detonation Using a Two Step Chemical Kinetics Model

The effect of chemical reactions on the blast initiation of detonation in gaseous media has been investigated in this paper. Analytical method is based on the numerical solution of onedimensional reactive Euler equations. So far, analyses on the blast initiation of detonation have modeled the combustion process as a one-step chemical reaction, which follows the Arrhenius rate law. Previous stud...

متن کامل

KINETICS OF -Fe NANOCRYSTALLIZATION IN Fe55Cr18Mo7B16C4 BULK AMORPHOUS ALLOY

Abstract: In this research work, crystallization kinetics of Fe55Cr18Mo7B16C4 alloy was evaluated by X-ray diffraction, TEM observations and differential scanning calorimetric tests. In practice, crystallization and growth mechanisms were investigated using DSC tests in four different heating rates. Results showed that a two -step crystallization process occurred in the alloy in which - Fe phas...

متن کامل

Crystallization Kinetics Study in Al87Ni10La3 Amorphous Alloy

In this study, the crystallization behavior of melt-spun Al87Ni10La3 amorphous phase was investigated by using X-ray diffraction and non-isothermal differential thermal analysis techniques. The results demonstrated that the amorphous phase exhibited two-stage crystallization on heating, i.e., at first step the amorphous phase transforms into α-Al phase and at second step Al11La3 and Al3Ni inter...

متن کامل

Intensity statistics in twinned crystals with examples from the PDB.

Entries deposited in the Protein Data Bank as of February 2004 for which both model and X-ray data were available were analysed to identify cases of twinning using such simple statistics as the R factor between potential twin-related reflections. Careful consideration of all identified twins showed that in many cases twinning was ignored during structure solution and refinement. Manual analysis...

متن کامل

Leaching Kinetics of Stibnite in Sodium Hydroxide

Spherical pellets of antimony sulphide were dissolved in 1 molar sodium hydroxide solutions at different temperatures. It was found that the shrinking core with ash layer model could satisfactorily explain the dissolution process. Using this model it was found that initially the rate controlling step is a chemical reaction with activation energy of 10.2 kJ/mol. As the ash layer builds up, diffu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013