Discrete linear objects in dimension n: the standard model

نویسنده

  • Eric Andres
چکیده

A new analytical description model, called the standard model, for the discretization of Euclidean linear objects (point, m-flat, m-simplex) in dimension n is proposed. The objects are defined analytically by inequalities. This allows a global definition independent of the number of discrete points. A method is provided to compute the analytical description for a given linear object. A discrete standard model has many properties in common with the supercover model from which it derives. However, contrary to supercover objects, a standard object does not have bubbles. A standard object is ðn 1Þ-connected, tunnel-free and bubble-free. The standard model is geometrically consistent. The standard model is well suited for modelling applications. 2003 Elsevier Science (USA). All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Eigenvalue Assignment Of Discrete-Time Linear Systems With State And Input Time-Delays

Time-delays are important components of many dynamical systems that describe coupling or interconnection between dynamics, propagation or transport phenomena, and heredity and competition in population dynamics. The stabilization with time delay in observation or control represents difficult mathematical challenges in the control of distributed parameter systems. It is well-known that the stabi...

متن کامل

Gorenstein projective objects in Abelian categories

Let $mathcal {A}$ be an abelian category with enough projective objects and $mathcal {X}$ be a full subcategory of $mathcal {A}$. We define Gorenstein projective objects with respect to $mathcal {X}$ and $mathcal{Y}_{mathcal{X}}$, respectively, where $mathcal{Y}_{mathcal{X}}$=${ Yin Ch(mathcal {A})| Y$ is acyclic and $Z_{n}Yinmathcal{X}}$. We point out that under certain hypotheses, these two G...

متن کامل

On the Algorithmic Aspects of Discrete and Lexicographic Helly-Type Theorems and the Discrete LP-Type Model

Helly’s theorem says that, if every d+1 elements of a given finite set of convex objects in Rd have a common point, there is a point common to all of the objects in the set. In discrete Helly theorems the common point should belong to an a priori given set. In lexicographic Helly theorems the common point should not be lexicographically greater than a given point. Using discrete and lexicograph...

متن کامل

Partial Eigenvalue Assignment in Discrete-time Descriptor Systems via Derivative State Feedback

A method for solving the descriptor discrete-time linear system is focused. For easily, it is converted to a standard discrete-time linear system by the definition of a derivative state feedback. Then partial eigenvalue assignment is used for obtaining state feedback and solving the standard system. In partial eigenvalue assignment, just a part of the open loop spectrum of the standard linear s...

متن کامل

Discrete-time repetitive optimal control: Robotic manipulators

This paper proposes a discrete-time repetitive optimal control of electrically driven robotic manipulators using an uncertainty estimator. The proposed control method can be used for performing repetitive motion, which covers many industrial applications of robotic manipulators. This kind of control law is in the class of torque-based control in which the joint torques are generated by permanen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Graphical Models

دوره 65  شماره 

صفحات  -

تاریخ انتشار 2003