Diversity of the ribulose bisphosphate carboxylase/oxygenase form I gene (rbcL) in natural phytoplankton communities.
نویسندگان
چکیده
The phytoplankton of the world's oceans play an integral part in global carbon cycling and food webs by conversion of carbon dioxide into organic carbon. They accomplish this task through the action of the Calvin cycle enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO). Here we have investigated the phylogenetic diversity in the form I rbcL locus in natural phytoplankton communities of the open ocean and representative clones of marine autotrophic picoplankton by mRNA or DNA amplification and sequencing of a 480 to 483 bp internal fragment of this gene. Five gene sequences were recovered from nucleic acids of natural phytoplankton communities of the Gulf of Mexico. The rbcL genes of two Prochlorococcus isolates and one Synechococcus strain (WH8007) were also sequenced. Sequences were aligned with the database of rbcL genes and subjected to both neighbor-joining and parsimony analyses. The five sequences from the natural phytoplankton community spanned nearly the entire diversity of characterized form I rbcL genes, with some sequences closely related to isolates such as Synechococcus and Prochlorococcus (forms IA and I) and prymnesiophyte algae (form ID), while other sequences were deeply rooted. Unexpectedly, the deep euphotic zone contained an organism that possesses a transcriptionally active rbcL gene closely related to that of a recently characterized manganese-oxidizing bacterium, suggesting that such chemoautotrophs may contribute to the diversity of carbon-fixing organisms in the marine euphotic zone.
منابع مشابه
Evidence for a clade-specific temporal and spatial separation in ribulose bisphosphate carboxylase gene expression in phytoplankton populations off Cape Hatteras and Bermuda
The factors affecting the regulation of photosynthetic carbon fixation in diverse phytoplankton populations are not yet understood. To this end, we have measured the expression of the gene (rbcL) for the major carbon fixation enzyme, ribulose-1,5-bisphosphate carboxylase/oxygenase, in coastal phytoplankton populations off Cape Hatteras and in oligotrophic oceanic picoplankton near Bermuda. Usin...
متن کاملRibulose-1, 5-Bisphosphate Carboxylase/Oxygenase Gene Sequencing in Taxonomic Delineation of Padina Species in theNorthern Coast of the Persian Gulf, (IRAN)
Taxonomic study of the genus Padina (Dictyotales, Phaeophyceae) from the Persian Gulf coast was conducted based on morphology and molecular phylogenetic analyses using chloroplast encoded large subunit RuBisCo (rbcL) gene sequences. Detailed descriptions of each species found in this study are described. Several morphological characters, such as number of cell layers composing the thallus, pr...
متن کاملPlastome engineering of ribulose-1,5-bisphosphate carboxylase/oxygenase in tobacco to form a sunflower large subunit and tobacco small subunit hybrid.
Targeted gene replacement in plastids was used to explore whether the rbcL gene that codes for the large subunit of ribulose-1, 5-bisphosphate carboxylase/oxygenase, the key enzyme of photosynthetic CO2 fixation, might be replaced with altered forms of the gene. Tobacco (Nicotiana tabacum) plants were transformed with plastid DNA that contained the rbcL gene from either sunflower (Helianthus an...
متن کاملAnalysis of Ribulose Bisphosphate Carboxylase Gene Expression in Natural Phytoplankton Communities by Group-Specific Gene Probing
To understand the composition and photosynthetic carbon fixing activities of natural phytoplankton communities, we employed group-specific ribulose bisphosphate carboxylase (RubisCO) large subunit gene probes (rbcL) to examine RubisCO gene expression. The rbcL genes from Synechococcus PCC6301 (cyano) and from Cylindrotheca sp. [chromo) were used as probes at select stations to examine levels of...
متن کاملAmplification of the rbcL gene from dissolved and particulate DNA from aquatic environments.
The carboxylation of ribulose biphosphate by the enzyme ribulosebisphosphate carboxylase/oxygenase is the mechanism for CO2 fixation and primary production in nearly all ecosystems on this planet. Although certain algal isolates and higher plants contain conserved nucleotide sequences in the large subunit of the gene (rbcL) for this enzyme, such genes from natural microbial assemblages have not...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 63 9 شماره
صفحات -
تاریخ انتشار 1997