Robust neuroprosthetic control from the stroke perilesional cortex.

نویسندگان

  • Tanuj Gulati
  • Seok Joon Won
  • Dhakshin S Ramanathan
  • Chelsea C Wong
  • Anitha Bodepudi
  • Raymond A Swanson
  • Karunesh Ganguly
چکیده

Intracortical brain-machine interfaces (BMIs) may eventually restore function in those with motor disability after stroke. However, current research into the development of intracortical BMIs has focused on subjects with largely intact cortical structures, such as those with spinal cord injury. Although the stroke perilesional cortex (PLC) has been hypothesized as a potential site for a BMI, it remains unclear whether the injured motor cortical network can support neuroprosthetic control directly. Using chronic electrophysiological recordings in a rat stroke model, we demonstrate here the PLC's capacity for neuroprosthetic control and physiological plasticity. We initially found that the perilesional network demonstrated abnormally increased slow oscillations that also modulated neural firing. Despite these striking abnormalities, neurons in the perilesional network could be modulated volitionally to learn neuroprosthetic control. The rate of learning was surprisingly similar regardless of the electrode distance from the stroke site and was not significantly different from intact animals. Moreover, neurons achieved similar task-related modulation and, as an ensemble, formed cell assemblies with learning. Such control was even achieved in animals with poor motor recovery, suggesting that neuroprosthetic control is possible even in the absence of motor recovery. Interestingly, achieving successful control also reduced locking to abnormal oscillations significantly. Our results thus suggest that, despite the disrupted connectivity in the PLC, it may serve as an effective target for neuroprosthetic control in those with poor motor recovery after stroke.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diffusional kurtosis and diffusion tensor imaging reveal different time-sensitive stroke-induced microstructural changes.

BACKGROUND AND PURPOSE Diffusion MRI is a promising, clinically feasible imaging technique commonly used to describe white matter changes after stroke. We investigated the sensitivity of diffusion MRI to detect microstructural alterations in gray matter after sensorimotor cortex stroke in adult male rats. METHODS The mean diffusivity (MD) and mean kurtosis of perilesional motor cortex were co...

متن کامل

Identifying Dysfunctional Cortex: Dissociable Effects of Stroke and Aging on Resting State Dynamics in MEG and fMRI

Spontaneous signals in neuroimaging data may provide information on cortical health in disease and aging, but the relative sensitivity of different approaches is unknown. In the present study, we compared different but complementary indicators of neural dynamics in resting-state MEG and BOLD fMRI, and their relationship with blood flow. Participants included patients with post-stroke aphasia, a...

متن کامل

Muscle synergies after stroke are correlated with perilesional high gamma

Movements can be factored into modules termed "muscle synergies". After stroke, abnormal synergies are linked to impaired movements; however, their neural basis is not understood. In a single subject, we examined how electrocorticography signals from the perilesional cortex were associated with synergies. The measured synergies contained a mix of both normal and abnormal patterns and were remar...

متن کامل

Perilesional treatment with chondroitinase ABC and motor training promote functional recovery after stroke in rats.

Ischemic stroke insults may lead to chronic functional limitations that adversely affect patient movements. Partial motor recovery is thought to be sustained by neuronal plasticity, particularly in areas close to the lesion site. It is still unknown if treatments acting exclusively on cortical plasticity of perilesional areas could result in behavioral amelioration. We tested whether enhancing ...

متن کامل

Corrigendum: Real-Time Control of a Neuroprosthetic Hand by Magnetoencephalographic Signals from Paralysed Patients

Neuroprosthetic arms might potentially restore motor functions for severely paralysed patients. Invasive measurements of cortical currents using electrocorticography have been widely used for neuroprosthetic control. Moreover, magnetoencephalography (MEG) exhibits characteristic brain signals similar to those of invasively measured signals. However, it remains unclear whether non-invasively mea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 35 22  شماره 

صفحات  -

تاریخ انتشار 2015