Three Positive Solutions for p-Laplacian Functional Dynamic Equations on Time Scales

نویسنده

  • Wen Guan
چکیده

In this paper, existence criteria of three positive solutions to the followimg p-Laplacian functional dynamic equation on time scales { [ Φp(u (t)) 5 + a(t)f(u(t), u(μ(t))) = 0, t ∈ (0, T ) , u0(t) = φ(t), t ∈ [−r, 0] , u(0)−B0(u (η)) = 0, u(T ) = 0, are established by using the well-known Five Functionals Fixed Point Theorem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Triple positive solutions of $m$-point boundary value problem on time scales with $p$-Laplacian

‎In this paper‎, ‎we consider the multipoint boundary value problem for one-dimensional $p$-Laplacian‎ ‎dynamic equation on time scales‎. ‎We prove the existence at least three positive solutions of the boundary‎ ‎value problem by using the Avery and Peterson fixed point theorem‎. ‎The interesting point is that the non-linear term $f$ involves a first-order derivative explicitly‎. ‎Our results ...

متن کامل

Existence of positive solutions for a second-order p-Laplacian impulsive boundary value problem on time scales

In this paper, we investigate the existence of positive solutions for a second-order multipoint p-Laplacian impulsive boundary value problem on time scales. Using a new fixed point theorem in a cone, sufficient conditions for the existence of at least three positive solutions are established. An illustrative example is also presented.

متن کامل

Three Positive Solutions for P-laplacian Functional Dynamic Equations on Time Scales

In this paper, we establish the existence of three positive solutions to the following p-Laplacian functional dynamic equation on time scales, [Φp(u ∆(t))]∇ + a(t)f(u(t), u(μ(t))) = 0, t ∈ (0, T )T, u0(t) = φ(t), t ∈ [−r, 0]T, u(0)−B0(u(η)) = 0, u(T ) = 0, . using the fixed-point theorem due to Avery and Peterson [8]. An example is given to illustrate the main result.

متن کامل

Double positive solutions of boundary value problems for p-Laplacian impulsive functional dynamic equations on time scales

This paper is devoted to studying the existence of positive solutions of the boundary value problem for p-Laplacian impulsive functional dynamic equations on time scales. Existence results of at least two positive solutions are established via a fixed point theorem in a cone. c © 2007 Elsevier Ltd. All rights reserved.

متن کامل

TRIPLE POSITIVE SOLUTIONS FOR m-POINT BOUNDARY-VALUE PROBLEMS OF DYNAMIC EQUATIONS ON TIME SCALES WITH p-LAPLACIAN

In this article we study the existence of positive solutions for mpoint dynamic equation on time scales with p-Laplacian. We prove that the boundary-value problem has at least three positive solutions by applying the five functionals fixed-point theorem. An example demonstrates the main results.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008