Shut Down, Don't Stress Out
ثبت نشده
چکیده
Chemical reactions lie at the heart of many biological processes, from photosynthesis and respiration to cell signaling and drug metabolism. Thanks to an atmosphere rich in oxygen, many organisms use oxygen to carry out these life processes. But oxygen metabolism produces highly toxic by-products called reactive oxygen species. When oxidation outpaces detoxifying reactions, oxidative stress occurs, and accumulating reactive oxygen species are free to wreak havoc on cellular machinery. Cysteine, one of the 20 different amino acids that make up proteins, contains a thiol group, which can be modifi ed upon oxidation. A thiol group can stabilize protein structures by forming covalent disulfi de bonds and can mediate cysteine-regulated redox reactions. At the same time, however, the high reactivity of thiol groups makes them also particularly vulnerable to nonspecifi c reactions during conditions of oxidative stress. Over the past few years, an increasing number of proteins have been discovered that use oxidative thiol chemistry to regulate their protein activity. In PLoS Biology, Lars Leichert and Ursula Jakob describe a novel method to monitor thiol modifi cations in proteins subjected to varying redox conditions in a living organism, the bacteria Escherichia coli. This technique is capable of providing a global snapshot of the redox state of protein cysteines during normal and oxidative stress conditions in the cell. To detect proteins that have the ability to undergo stress-induced thiol modifi cations, Leichert and Jakob differentially labeled the thiol groups of thiol-modifi ed and non-thiol-modifi ed proteins. The proteins were then separated on two-dimensional gels based on their charge and molecular weight. If the technique worked, most thiol-modifi ed proteins should be detected in the oxidizing environment of the E. coli periplasm (the region between the cell's membrane layers), and they were. After proving the method's ability to detect proteins whose thiol groups were oxidized, the next logical step was to determine what proteins DsbA—the enzyme that catalyzes disulfi de bond formation in the E. coli periplasm—was targeting. In E. coli mutant strains that lack DsbA, Leichert and Jakob identifi ed a number of proteins with either substantially less or no thiol modifi cation as compared to wild-type (non-mutant) strains, suggesting that these proteins are indeed DsbA substrates. In contrast to the periplasm, the E. coli cytoplasm contains several reducing systems. When the researchers tested a mutant strain that lacked the gene for the reducing enzyme thioredoxin, they found that a large number …
منابع مشابه
An emergency brake for protein synthesis
The integrated stress response is able to rapidly shut down the synthesis of proteins in eukaryotic cells.
متن کاملAvailability of k-out-of-n: F Secondary Subsystem with General Repair Time Distribution
In this paper we study the steady state availability of main k-out-of-n: F and secondary subsystems having general repair time distribution. When more than k units of main subsystem fail, then the main subsystem shuts off the secondary subsystem. The life time distributions of the main units and that of secondary subsystem are exponentially distributed. A repair facility having single repairman...
متن کاملThis is your brain in meltdown.
Neural circuits responsible for conscious self-control are highly vulnerable to even mild stress. When they shut down, primal impulses go unchecked and mental paralysis sets in
متن کاملThe shut-down gene of Drosophila melanogaster encodes a novel FK506-binding protein essential for the formation of germline cysts during oogenesis.
In Drosophila melanogaster, the process of oogenesis is initiated with the asymmetric division of a germline stem cell. This division results in the self-renewal of the stem cell and the generation of a daughter cell that undergoes four successive mitotic divisions to produce a germline cyst of 16 cells. Here, we show that shut-down is essential for the normal function of the germline stem cell...
متن کاملHigh levels of TopBP1 induce ATR-dependent shut-down of rRNA transcription and nucleolar segregation
Nucleoli are not only organelles that produce ribosomal subunits. They are also overarching sensors of different stress conditions and they control specific nucleolar stress pathways leading to stabilization of p53. During DNA replication, ATR and its activator TopBP1 initiate DNA damage response upon DNA damage and replication stress. We found that a basal level of TopBP1 protein associates wi...
متن کاملReliability and durability from large heat recovery steam generators
Experience with heat recovery steam generators (HRSGs) designed for larger-heat-input and higher-steam conditions highlights limitations in some features of traditional designs extrapolated from smaller HRSGs that operated predominantly continuously. Many combined-cycle units may be subjected to periods of regular overnight shut-down much earlier than expected and, unless anticipated during the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- PLoS Biology
دوره 2 شماره
صفحات -
تاریخ انتشار 2004