Rhythmic syllable-related activity in a songbird motor thalamic nucleus necessary for learned vocalizations
نویسندگان
چکیده
Birdsong is a complex behavior that exhibits hierarchical organization. While the representation of singing behavior and its hierarchical organization has been studied in some detail in avian cortical premotor circuits, our understanding of the role of the thalamus in adult birdsong is incomplete. Using a combination of behavioral and electrophysiological studies, we seek to expand on earlier work showing that the thalamic nucleus Uvaeformis (Uva) is necessary for the production of stereotyped, adult song in zebra finch (Taeniopygia guttata). We confirm that complete bilateral lesions of Uva abolish singing in the 'directed' social context, but find that in the 'undirected' social context, such lesions result in highly variable vocalizations similar to early babbling song in juvenile birds. Recordings of neural activity in Uva reveal strong syllable-related modulation, maximally active prior to syllable onsets and minimally active prior to syllable offsets. Furthermore, both song and Uva activity exhibit a pronounced coherent modulation at 10Hz-a pattern observed in downstream premotor areas in adult and, even more prominently, in juvenile birds. These findings are broadly consistent with the idea that Uva is critical in the sequential activation of behavioral modules in HVC.
منابع مشابه
Manipulation of a Central Auditory Representation Shapes Learned Vocal Output
Learned vocalizations depend on the ear's ability to monitor and ultimately instruct the voice. Where is auditory feedback processed in the brain, and how does it modify motor networks for learned vocalizations? Here we addressed these questions using singing-triggered microstimulation and chronic recording methods in the singing zebra finch, a small songbird that relies on auditory feedback to...
متن کاملO23: Modulation of Pacemaker Channels and Rhythmic Thalamic Activity by Demyelination and Inflammatory Cytokines
The thalamus is a central element for the generation of rhythmic oscillatory activity under physiological and pathophysiological conditions. Especially slow oscillations in the delta and theta frequency band which normally occur during slow-wave sleep are associated with a number of neuropsychiatric conditions if they occur during wakefulness and may be the basis for the generation of character...
متن کاملRhythmic activity in a forebrain vocal control nucleus in vitro.
The learned vocalizations of songbirds constitute a rhythmic behavior that is thought to be governed by a central pattern generator and that is accompanied by highly patterned neural activity. Phasic premotor activity is observed during singing in HVC [used as a proper name following the nomenclature of Reiner et al. (2004)], a telencephalic song system nucleus that is essential for song produc...
متن کاملBirdsong Learning
Birdsong has been compared to human speech because both are examples of animal vocalizations that are at least partially learned. Indeed, some of the neural pathways underlying these vocal behaviors may be similar in songbirds and humans. More generally, birdsong can be compared to any motor behavior that involves sequential control and learning and is an ideal playground for experimental and t...
متن کاملThe pallial basal ganglia pathway modulates the behaviorally driven gene expression of the motor pathway.
The discrete neural network for songbird vocal communication provides an effective system to study neural mechanisms of learned motor behaviors in vertebrates. This system consists of two pathways--a vocal motor pathway used to produce learned vocalizations and a vocal pallial basal ganglia loop used to learn and modify the vocalizations. However, it is not clear how the loop exerts control ove...
متن کامل