Determination of Wind Turbine Near-Wake Length Based on Stability Analysis

نویسندگان

  • Jens N. Sørensen
  • Robert Mikkelsen
  • Sasan Sarmast
  • Stefan Ivanell
  • Dan Henningson
چکیده

A numerical study on the wake behind a wind turbine is carried out focusing on determining the length of the near-wake based on the instability onset of the trailing tip vortices shed from the turbine blades. The numerical model is based on large-eddy simulations (LES) of the Navier-Stokes equations using the actuator line (ACL) method. The wake is perturbed by applying stochastic or harmonic excitations in the neighborhood of the tips of the blades. The flow field is then analyzed to obtain the stability properties of the tip vortices in the wake of the wind turbine. As a main outcome of the study it is found that the amplification of specific waves (traveling structures) along the tip vortex spirals is responsible for triggering the instability leading to wake breakdown. The presence of unstable modes in the wake is related to the mutual inductance (vortex pairing) instability where there is an out-of-phase displacement of successive helix turns. Furthermore, using the non-dimensional growth rate, it is found that the pairing instability has a universal growth rate equal to π/2. Using this relationship, and the assumption that breakdown to turbulence occurs once a vortex has experienced sufficient growth, we provide an analytical relationship between the turbulence intensity and the stable wake length. The analysis leads to a simple expression for determining the length of the near wake. This expression shows that the near wake length is inversely proportional to thrust, tip speed ratio and the logarithmic of the turbulence intensity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simulation of wind turbine wakes using the actuator line technique.

The actuator line technique was introduced as a numerical tool to be employed in combination with large eddy simulations to enable the study of wakes and wake interaction in wind farms. The technique is today largely used for studying basic features of wakes as well as for making performance predictions of wind farms. In this paper, we give a short introduction to the wake problem and the actua...

متن کامل

The influence of trailed vorticity on flutter speed estimations

This paper briefly describes the implementation of a coupled near and far wake model for wind turbine rotor induction in the aeroelastic code HAWC2 and its application for flutter analysis of the NREL 5 MW wind turbine. The model consists of a far wake part based on Blade Element Momentum (BEM) theory, which is coupled with Beddoes’ near wake model for trailed vorticity. The first part of this ...

متن کامل

Large Disturbance Stability Analysis of Wind Turbine Implemented with DFIG

As one of the most promising Distributed Generation (DG) sources, wind power technology has been widely developed in recent years. Doubly fed induction generator (DFIG) is currently employed as one of the most common topologies for wind turbine generators (WTGs). This generator operates as a synchronous/asynchronous hybrid generators. Therefore, it is necessary to power engineers find understan...

متن کامل

An Experimental Investigation on the Aeromechanics and Near Wake Characteristics of Dual-Rotor Wind Turbines (DRWTs)

An experimental study was conducted to investigate the aeromechanic performance and near wake characterstics of dual-rotor wind turbine (DRWT) models with co-rotating or counter-rotating configurations in comparison to a conventional single rotor wind turbine (SRWT) model in order to elucidate the underlying physics to explore/optimize design of wind turbines for higher power yield and better d...

متن کامل

Large Disturbance Stability Analysis of Wind Turbine Implemented with DFIG

As one of the most promising Distributed Generation (DG) sources, wind power technology has been widely developed in recent years. Doubly fed induction generator (DFIG) is currently employed as one of the most common topologies for wind turbine generators (WTGs). This generator operates as a synchronous/asynchronous hybrid generators. Therefore, it is necessary to power engineers find understan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017