An approach to melodic segmentation and classification based on filtering with the Haar-wavelet
نویسندگان
چکیده
We present a novel method of classification and segmentation of melodies in symbolic representation. The method is based on filtering pitch as a signal over time with the Haar-wavelet, and we evaluate it on two tasks. The filtered signal corresponds to a single-scale signal ws from the continuous Haar wavelet transform. The melodies are first segmented using local maxima or zero-crossings of ws. The segments of ws are then classified using the k–nearest neighbour algorithm with Euclidian and city-block distances. The method proves more effective than using unfiltered pitch signals and Gestalt-based segmentation when used to recognize the parent works of segments from Bach’s Two-Part Inventions (BWV 772–786). When used to classify 360 Dutch folk tunes into 26 tune families, the performance of the method is comparable to the use of pitch signals, but not as good as that of stringmatching methods based on multiple features.
منابع مشابه
A numerical approach to solve eighth order boundary value problems by Haar wavelet collocation method
In this paper a robust and accurate algorithm based on Haar wavelet collocation method (HWCM) is proposed for solving eighth order boundary value problems. We used the Haar direct method for calculating multiple integrals of Haar functions. To illustrate the efficiency and accuracy of the concerned method, few examples are considered which arise in the mathematical modeling of fluid dynamics an...
متن کاملWavelet-filtering of Symbolic Music Representations for Folk Tune Segmentation and Classification
The aim of this study is to evaluate a machine-learning method in which symbolic representations of folk songs are segmented and classified into tune families with Haar-wavelet filtering. The method is compared with previously proposed Gestaltbased method. Melodies are represented as discrete symbolic pitch-time signals. We apply the continuous wavelet transform (CWT) with the Haar wavelet at s...
متن کاملAn Improved Pixon-Based Approach for Image Segmentation
An improved pixon-based method is proposed in this paper for image segmentation. In thisapproach, a wavelet thresholding technique is initially applied on the image to reduce noise and toslightly smooth the image. This technique causes an image not to be oversegmented when the pixonbasedmethod is used. Indeed, the wavelet thresholding, as a pre-processing step, eliminates theunnecessary details...
متن کاملSpectral-spatial classification of hyperspectral images by combining hierarchical and marker-based Minimum Spanning Forest algorithms
Many researches have demonstrated that the spatial information can play an important role in the classification of hyperspectral imagery. This study proposes a modified spectral–spatial classification approach for improving the spectral–spatial classification of hyperspectral images. In the proposed method ten spatial/texture features, using mean, standard deviation, contrast, homogeneity, corr...
متن کاملClassification of Endometrial Images for Aiding the Diagnosis of Hyperplasia Using Logarithmic Gabor Wavelet
Introduction: The process of discriminating among benign and malignant hyperplasia begun with subjective methods using light microscopy and is now being continued with computerized morphometrical analysis requiring some features. One of the main features called Volume Percentage of Stroma (VPS) is obtained by calculating the percentage of stroma texture. Currently, this feature is calculated ...
متن کامل