The accuracy of codon recognition by polypeptide release factors.

نویسندگان

  • D V Freistroffer
  • M Kwiatkowski
  • R H Buckingham
  • M Ehrenberg
چکیده

The precision with which individual termination codons in mRNA are recognized by protein release factors (RFs) has been measured and compared with the decoding of sense codons by tRNA. An Escherichia coli system for protein synthesis in vitro with purified components was used to study the accuracy of termination by RF1 and RF2 in the presence or absence of RF3. The efficiency of factor-dependent termination at all sense codons differing from any of the three stop codons by a single mutation was measured and compared with the efficiency of termination at the three stop codons. RF1 and RF2 discriminate against sense codons related to stop codons by between 3 and more than 6 orders of magnitude. This high level of accuracy is obtained without energy-driven error correction (proofreading), in contrast to codon-dependent aminoacyl-tRNA recognition by ribosomes. Two codons, UAU and UGG, stand out as hotspots for RF-dependent premature termination.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polypeptide release at sense and noncognate stop codons by localized charge-exchange alterations in translational release factors.

The mechanism of stop codon recognition during translation has long been a puzzle. Only recently has it been established that a tripeptide in the bacterial release factors (RFs) 1 and 2 serves as the "anticodon" in deciphering stop codons in mRNA. However, the molecular basis of the accuracy of stop codon recognition is unknown. Although specific tripeptides in the RFs are primarily responsible...

متن کامل

Translation termination: new factors and insights.

In eukaryotes, translation termination requires two eukaryotic release factors, eRF1 and eRF3. eRF1 is required for recognition of the stop codon and eRF3 supports the polypeptide chain release in a GTP dependent manner. Recently, several new players in translation termination have been identified. The DEAD-box RNA helicase Dbp5 has been shown to support eRF1 in stop codon recognition, possibly...

متن کامل

Invariant amino acids essential for decoding function of polypeptide release factor eRF1

In eukaryotic ribosome, the N domain of polypeptide release factor eRF1 is involved in decoding stop signals in mRNAs. However, structure of the decoding site remains obscure. Here, we specifically altered the stop codon recognition pattern of human eRF1 by point mutagenesis of the invariant Glu55 and Tyr125 residues in the N domain. The 3D structure of generated eRF1 mutants was not destabiliz...

متن کامل

Common and specific amino acid residues in the prokaryotic polypeptide release factors RF1 and RF2: possible functional implications

Termination of protein synthesis is promoted in ribosomes by proper stop codon discrimination by class 1 polypeptide release factors (RFs). A large set of prokaryotic RFs differing in stop codon specificity, RF1 for UAG and UAA, and RF2 for UGA and UAA, was analyzed by means of a recently developed computational method allowing identification of the specificity-determining positions (SDPs) in f...

متن کامل

Functional characterization of polypeptide release factor 1b in the ciliate Euplotes.

In higher eukaryotes, RF-I (class I release factor) [eRF1 (eukaryotic release factor 1)] is responsible for stop codon recognition and promotes nascent polypeptide release from the ribosome. Interestingly, two class I RFs, eRF1a and eRF1b, have been identified among the ciliates Euplotes, which are variant code organisms. In the present study, we analysed the comparative expression of eRF1a and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 97 5  شماره 

صفحات  -

تاریخ انتشار 2000