Comparative proteomics implicates a role for multiple secretion systems in electrode-respiring Geobacter sulfurreducens biofilms.

نویسندگان

  • Paul Kavanagh
  • Catherine H Botting
  • Partha S Jana
  • Donal Leech
  • Florence Abram
چکیده

Geobacter sulfurreducens is a dissimilatory metal-reducing bacterium capable of forming thick electron-conducting biofilms on solid electrodes. Here, we employ for the first time comparative proteomics to identify key physiological changes involved in G. sulfurreducens adaptation from fumarate-respiring planktonic cells to electron-conducting biofilms. Increased levels of proteins involved in outer membrane biogenesis, cell motility and secretion are expressed in biofilms. Of particular importance to the electron-conducting biofilms are proteins associated with secretion systems of Type I, II, V and Type IV pili. Furthermore, enzymes involved in lipopolysaccharide and peptidoglycan biosynthesis show increased levels of expression in electron-conducting biofilms compared to planktonic cells. These observations point to similarities in long-range electron transfer mechanisms between G. sulfurreducens and Shewanella oneidensis, while highlighting the wider significance of secretion systems beyond that of Type IV pili identified to date in the adaptation of G. sulfurreducens to electrode respiration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Long-range electron transport in Geobacter sulfurreducens biofilms is redox gradient-driven.

Geobacter spp. can acquire energy by coupling intracellular oxidation of organic matter with extracellular electron transfer to an anode (an electrode poised at a metabolically oxidizing potential), forming a biofilm extending many cell lengths away from the anode surface. It has been proposed that long-range electron transport in such biofilms occurs through a network of bound redox cofactors,...

متن کامل

A long way to the electrode: how do Geobacter cells transport their electrons?

The mechanism of electron transport in Geobacter sulfurreducens biofilms is a topic under intense study and debate. Although some proteins were found to be essential for current production, the specific role that each one plays in electron transport to the electrode remains to be elucidated and a consensus on the mechanism of electron transport has not been reached. In the present paper, to und...

متن کامل

Investigation of Electron Transfer by Geobacter sulfurreducens Biofilms by using an Electrochemical Quartz Crystal Microbalance

Both the short- and long-term electron-transfer processes of electrode-respiring Geobacter sulfurreducens biofilms are demonstrated by using an electrochemical quartz crystal microbalance (QCM). The QCM monitors the frequency shift from the initial resonant frequency (background) in real time, while the current increases, because of biofilm growth. In the short term, the frequency shift is line...

متن کامل

Generation of High Current Densities by Pure Cultures of Anode-Respiring Geoalkalibacter spp. under Alkaline and Saline Conditions in Microbial Electrochemical Cells

UNLABELLED Anode-respiring bacteria (ARB) generate electric current in microbial electrochemical cells (MXCs) by channeling electrons from the oxidation of organic substrates to an electrode. Production of high current densities by monocultures in MXCs has resulted almost exclusively from the activity of Geobacter sulfurreducens, a neutrophilic freshwater Fe(III)-reducing bacterium and the high...

متن کامل

Lactate oxidation coupled to iron or electrode reduction by Geobacter sulfurreducens PCA.

Geobacter sulfurreducens PCA completely oxidized lactate and reduced iron or an electrode, producing pyruvate and acetate intermediates. Compared to the current produced by Shewanella oneidensis MR-1, G. sulfurreducens PCA produced 10-times-higher current levels in lactate-fed microbial electrolysis cells. The kinetic and comparative analyses reported here suggest a prominent role of G. sulfurr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of proteome research

دوره   شماره 

صفحات  -

تاریخ انتشار 2016