Self-adjointness of Cauchy Singular Integral Operator
نویسنده
چکیده
We extend Krupnik’s criterion of self-adjointness of the Cauchy singular integral operator to the case of finitely connected domains. The main aim of the paper is to present a new approach for proof of the criterion. Let G+ be a finitely connected domain bounded by the rectifiable curve C = ∂G+, G− = C \ clos G+ and ∞ ∈ G−. Suppose also that w(z), z ∈ C is a nonnegative weight such that w(z) 6≡ 0 on each connected component of the curve C. For any f ∈ L(C, |dz|) , we denote by f±(z) , z ∈ C the angular boundary values of the Cauchy transform
منابع مشابه
$L_{p;r} $ spaces: Cauchy Singular Integral, Hardy Classes and Riemann-Hilbert Problem in this Framework
In the present work the space $L_{p;r} $ which is continuously embedded into $L_{p} $ is introduced. The corresponding Hardy spaces of analytic functions are defined as well. Some properties of the functions from these spaces are studied. The analogs of some results in the classical theory of Hardy spaces are proved for the new spaces. It is shown that the Cauchy singular integral operator is...
متن کاملAn effective method for approximating the solution of singular integral equations with Cauchy kernel type
In present paper, a numerical approach for solving Cauchy type singular integral equations is discussed. Lagrange interpolation with Gauss Legendre quadrature nodes and Taylor series expansion are utilized to reduce the computation of integral equations into some algebraic equations. Finally, five examples with exact solution are given to show efficiency and applicability of the method. Also, w...
متن کاملCauchy Kernels for some Conformally Flat Manifolds
Here we will consider examples of conformally flat manifolds that are conformally equivalent to open subsets of the sphere S. For such manifolds we shall introduce a Cauchy kernel and Cauchy integral formula for sections taking values in a spinor bundle and annihilated by a Dirac operator, or generalized Cauchy-Riemann operator. Basic properties of this kernel are examined, in particular we exa...
متن کاملNumerical Solution of Singular IVPs of Lane-Emden Type Using Integral Operator and Radial Basis Functions
متن کامل
Approximate solution of dual integral equations
We study dual integral equations which appear in formulation of the potential distribution of an electrified plate with mixed boundary conditions. These equations will be converted to a system of singular integral equations with Cauchy type kernels. Using Chebyshev polynomials, we propose a method to approximate the solution of Cauchy type singular integral equation which will ...
متن کامل