Gdnf signaling pathways within the mammalian spermatogonial stem cell niche.
نویسنده
چکیده
Mammalian spermatogenesis is a complex process in which male germ-line stem cells develop to ultimately form spermatozoa. Spermatogonial stem cells, or SSCs, are found in the basal compartment of the seminiferous epithelium. They self-renew to maintain the pool of stem cells throughout life, or they differentiate to generate a large number of germ cells. A balance between SSC self-renewal and differentiation in the adult testis is therefore essential to maintain normal spermatogenesis and fertility. Maintenance and self-renewal are tightly regulated by extrinsic signals from the surrounding microenvironment, called the spermatogonial stem cell niche. By physically supporting the SSCs and providing them with growth factors, the Sertoli cell is the main component of the niche. In addition, adhesion molecules that connect the SSCs to the basement membrane and cellular components of the interstitium between the seminiferous tubules are important regulators of the niche function. This review mainly focuses on glial cell line-derived neurotrophic factor (Gdnf), which is produced by Sertoli cells to maintain SSCs self-renewal, and the downstream signaling pathways induced by this crucial growth factor. Interactions between Gdnf and other signaling pathways that maintain self-renewal, as well as the role of novel SSC- and Sertoli cell-specific transcription factors, are also discussed.
منابع مشابه
Expression regulation and function of heparan sulfate 6-O-endosulfatases in the spermatogonial stem cell niche.
Glial cell line-derived neurotrophic factor (GDNF) is a heparan sulfate (HS)-binding factor. GDNF is produced by somatic Sertoli cells, where it signals to maintain spermatogonial stem cells (SSCs) and reproduction. Here, we investigate the roles of extracellular HS 6-O-endosulfatases (Sulfs), Sulf1 and Sulf2, in the matrix transmission of GDNF from Sertoli cells to SSCs. Although Sulfs are not...
متن کاملMaintenance of potential spermatogonial stem cells in vitro by GDNF treatment in a chondrichthyan model (Scyliorhinus canicula L.).
Previous work in dogfish, Scyliorhinus canicula, has identified the testicular germinative area as the spermatogonial stem cell niche. In the present study, an in vitro co-culture system of spermatogonia and somatic cells from the germinative area was developed. Long-term maintenance of spermatogonia has been successful, and addition of GDNF has promoted the development of clones of spermatogon...
متن کاملHidden gems in the niche: a new approach to the study of spermatogonial stem cells.
anatsu-Shinohara and colleagues continue to reveal the secrets of the rare mammalian spermatogonial stem cells. Their most recent study offers a new approach by applying principles from hematopoietic stem cell research to demonstrate that cells which form a cobblestone-like underlay beneath testicular somatic cells in culture are spermatogonial stem cells. Utilization of mouse models and cell c...
متن کاملDev113969 4468..4478
Stem cells are influenced by their surrounding microenvironment, or niche. In the testis, Sertoli cells are the key niche cells directing the population size and differentiation fate of spermatogonial stem cells (SSCs). Failure to properly regulateSSCs leads to infertility or germcell hyperplasia. Several Sertoli cell-expressed genes, such as Gdnf and Cyp26b1, have been identified as being indi...
متن کاملGlial cell line-derived neurotrophic factor maintains a POZ-itive influence on stem cells.
I n adult males, germ-line stem cells have the remarkable ability to both self-renew and differentiate, ensuring that a continuous population of mature spermatozoa is produced throughout the lifetime of the animal. This balance between self-renewal and differentiation is thought to depend on the proper cellular environment, or stem cell ‘‘niche,’’ that provides the appropriate signals at the ri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular and cellular endocrinology
دوره 288 1-2 شماره
صفحات -
تاریخ انتشار 2008