A New Anticorrelation-Based Spectral Clustering Formulation
نویسندگان
چکیده
This paper introduces the Spectral Clustering Equivalence (SCE) algorithm which is intended to be an alternative to spectral clustering (SC) with the objective to improve both speed and quality of segmentation. Instead of solving for the spectral decomposition of a similarity matrix as in SC, SCE converts the similarity matrix to a columncentered dissimilarity matrix and searches for a pair of the most anticorrelated columns. The orthogonal complement to these columns is then used to create an output feature vector (analogous to eigenvectors obtained via SC), which is used to partition the data into discrete clusters. We demonstrate the performance of SCE on a number of artificial and real datasets by comparing its classification and image segmentation results with those returned by kernel-PCA and Normalized Cuts algorithm. The column-wise processing allows the applicability of SCE to Very Large Scale problems and asymmetric datasets.
منابع مشابه
Multiway Spectral Clustering: A Margin-Based Perspective
Spectral clustering is a broad class of clustering procedures in which an intractable combinatorial optimization formulation of clustering is “relaxed” into a tractable eigenvector problem, and in which the relaxed solution is subsequently “rounded” into an approximate discrete solution to the original problem. In this paper we present a novel margin-based perspective on multiway spectral clust...
متن کاملبازشناسی جلوههای هیجانی با استفاده از تحلیل تفکیک پذیری مبتنی بر خوشه بندی چهره
Improvement of Facial expression recognition is aim of proposed method. This is a new formulation to the linear discriminant analysis. In the new formulation within-class and between-class covariance matrix are estimated on the each cluster and in the test phase new samples are mapped to the subspace that is related to the cluster of them. At the first we addressed clustering analysis of faces ...
متن کاملApplication of Combined Local Object Based Features and Cluster Fusion for the Behaviors Recognition and Detection of Abnormal Behaviors
In this paper, we propose a novel framework for behaviors recognition and detection of certain types of abnormal behaviors, capable of achieving high detection rates on a variety of real-life scenes. The new proposed approach here is a combination of the location based methods and the object based ones. First, a novel approach is formulated to use optical flow and binary motion video as the loc...
متن کاملA New Approach in Strategy Formulation using Clustering Algorithm: An Instance in a Service Company
The ever severe dynamic competitive environment has led to increasing complexity of strategic decision making in giant organizations. Strategy formulation is one of basic processes in achieving long range goals. Since, in ordinary methods considering all factors and their significance in accomplishing individual goals are almost impossible. Here, a new approach based on clustering method is pro...
متن کاملClustering with Complex Constraints - Algorithms and Applications
Clustering with constraints is an important and developing area. However, most work is confined to conjunctions of simple together and apart constraints which limit their usability. In this paper, we propose a new formulation of constrained clustering that is able to incorporate not only existing types of constraints but also more complex logical combinations beyond conjunctions. We first show ...
متن کامل