Counting phylogenetic invariants in some simple cases.
نویسنده
چکیده
An informal degrees of freedom argument is used to count the number of phylogenetic invariants in cases where we have three or four species and can assume a Jukes-Cantor model of base substitution with or without a molecular clock. A number of simple cases are treated and in each the number of invariants can be found. Two new classes of invariants are found: non-phylogenetic cubic invariants testing independence of evolutionary events in different lineages, and linear phylogenetic invariants which occur when there is a molecular clock. Most of the linear invariants found by Cavender (1989, Molec. Biol. Evol. 6, 301-316) turn out in the Jukes-Cantor case to be simple tests of symmetry of the substitution model, and not phylogenetic invariants.
منابع مشابه
Classifying and Counting Linear Phylogenetic Invariants for the Jukes-Cantor Model
Linear invariants are useful tools for testing phylogenetic hypotheses from aligned DNA/RNA sequences, particularly when the sites evolve at different rates. Here we give a simple, graph theoretic classification for each phylogenetic tree T, of its associated vector space I(T) of linear invariants under the Jukes-Cantor one-parameter model of nucleotide substitution. We also provide an easily d...
متن کاملSplice Graphs and their Vertex-Degree-Based Invariants
Let G_1 and G_2 be simple connected graphs with disjoint vertex sets V(G_1) and V(G_2), respectively. For given vertices a_1in V(G_1) and a_2in V(G_2), a splice of G_1 and G_2 by vertices a_1 and a_2 is defined by identifying the vertices a_1 and a_2 in the union of G_1 and G_2. In this paper, we present exact formulas for computing some vertex-degree-based graph invariants of splice of graphs.
متن کاملConstructing and Counting Phylogenetic Invariants
The method of invariants is an approach to the problem of reconstructing the phylogenetic tree of a collection of m taxa using nucleotide sequence data. Models for the respective probabilities of the 4m possible vectors of bases at a given site will have unknown parameters that describe the random mechanism by which substitution occurs along the branches of a putative phylogenetic tree. An inva...
متن کاملMarkov invariants, plethysms, and phylogenetics (the long version)
We explore model-based techniques of phylogenetic tree inference exercising Markov invariants. Markov invariants are group invariant polynomials and are distinct from what is known in the literature as phylogenetic invariants, although we establish a commonality in some special cases. We show that the simplest Markov invariant forms the foundation of the Log-Det distance measure. We take as our...
متن کاملCounting simple knots via arithmetic invariants
Knot theory and arithmetic invariant theory are two fields of mathematics that rely on algebraic invariants. We investigate the connections between the two, and give a framework for addressing asymptotic counting questions relating to knots and knot invariants. We study invariants of simple (2q − 1)-knots when q is odd; these include the Alexander module and Blanchfield pairing. In the case tha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of theoretical biology
دوره 152 3 شماره
صفحات -
تاریخ انتشار 1991