Numerical simulation of moving rigid bodies in rarefied gases

نویسنده

  • Samir Shrestha
چکیده

In this paper we present a numerical scheme to simulate a moving rigid body with arbitrary shape suspended in a rarefied gas. The rarefied gas is simulated by solving the Boltzmann equation using a DSMC particle method. The motion of the rigid body is governed by the Newton-Euler equations, where the force and the torque on the rigid body is computed from the momentum transfer of the gas molecules colliding with the body. On the other hand, the motion of the rigid body influences the gas flow in its surroundings. We validate the numerical results by testing the Einstein relation for Brownian motion of the suspended particle. The translational as well as the rotational degrees of freedom are taken into account. It is shown that the numerically computed translational and rotational diffusion coefficients converge to the theoretical values.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Investigation of Shock Tube Flow under Rarefied Conditions

Two-dimensional Direct Simulation Monte Carlo (DSMC) simulations are carried out for investigating the shock wave propagation and boundary layer effects in a shock tube flow, for a wide range of rarefied conditions. Nitrogen is used for all simulations. The Cercignani-Lampis-Lord (CLL) model of gas surface interactions is implemented to study the effects of boundary layer which develops behind ...

متن کامل

Wave Evolution in Water Bodies using Turbulent MPS Simulation

Moving Particle Semi-implicit (MPS) which is a meshless and full Lagrangian method is employed to simulate nonlinear hydrodynamic behavior in a wide variety of engineering application including free surface water waves. In the present study, a numerical particle-based model is developed by the authors using MPS method to simulate different wave problems in the coastal waters. In this model flui...

متن کامل

The study of sound wave propagation in rarefied gases using unified gas-kinetic scheme

Sound wave propagation in rarefied monatomic gases is simulated using a newly developed unified gaskinetic scheme (UGKS). The numerical calculations are carried out for a wide range of wave oscillating frequencies. The corresponding rarefaction parameter is defined as the ratio of sound wave frequency to the intermolecular particle collision frequency. The simulation covers the flow regime from...

متن کامل

A distributed Lagrange multiplier/®ctitious domain method for the simulation of ̄ow around moving rigid bodies: application to particulate ̄ow

In this article we discuss the application of a Lagrange multiplier based ®ctitious domain method to the numerical simulation of incompressible viscous ̄ow modeled by the Navier±Stokes equations around moving rigid bodies; the rigid body motion is due to hydrodynamical forces and gravity. The solution method combines ®nite element approximations, time discretization by operators splitting and c...

متن کامل

Numerical Evaluation of Cushioning Pressure in Water Entry of Rigid Bodies

Effect of air cushion layer right before impact of a rigid body onto water surface has been investigated in this paper. The study is mainly focused on evaluation of cushioning pressure and the resulting free surface elevation. The air flow is assumed to be an irrotational flow which is governed by Laplace equation. The air problem and the resulting response of the water free surface are suppose...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014