State Estimation for Linear Parabolic Equations: Minimax Projection Method

نویسندگان

  • Sergiy Zhuk
  • Jason Frank
  • Isabelle Herlin
  • Robert Shorten
چکیده

In this paper we propose a state estimation approach for linear parabolic Partial Differential Equations (PDE) with uncertain parameters. It is based on an extension of the Galerkin projection method. The extended method models projection coefficients, representing the state of the PDE in some basis, by means of a Differential-Algebraic Equation (DAE). The original estimation problem for the PDE is then recast as a state estimation problem for the constructed DAE using a linear continuous minimax filter. We develop a discretization method of order p to go from continuous to discrete time to realize a numerical simulation. The time discretisation method preserves quadratic invariants, thus ensuring that the state estimation error, which is proved to hold for the continuous filter, is preserved for the discrete filter during the numerical simulation. To conclude we demonstrate the efficacy of the proposed method by applying it to the tracking of a discharged pollutant slick in a 2D fluid.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Data Assimilation for Linear Parabolic Equations: Minimax Projection Method

In this paper we propose a state estimation method for linear parabolic partial differential equations (PDE) that accounts for errors in the model, truncation, and observations. It is based on an extension of the Galerkin projection method. The extended method models projection coefficients, representing the state of the PDE in some basis, by means of a differential-algebraic equation (DAE). Th...

متن کامل

Minimax state estimation for linear stationary differential-algebraic equations ?

This paper presents a generalization of the minimax state estimation approach for singular linear Differential-Algebraic Equations (DAE) with uncertain but bounded input and observation’s noise. We apply generalized Kalman Duality principle to DAE in order to represent the minimax estimate as a solution of a dual control problem for adjoint DAE. The latter is then solved converting the adjoint ...

متن کامل

Reduced basis approximation and a posteriori error estimation for parametrized parabolic PDEs; Application to real-time Bayesian parameter estimation

In this chapter we consider reduced basis approximation and a posteriori error estimation for linear functional outputs of affinely parametrized linear and non-linear parabolic partial differential equations. The essential ingredients are Galerkin projection onto a low-dimensional space associated with a smooth “parametric manifold” — dimension reduction; efficient and effective Greedy and POD-...

متن کامل

VARIATIONAL DISCRETIZATION AND MIXED METHODS FOR SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS WITH INTEGRAL CONSTRAINT

The aim of this work is to investigate the variational discretization and mixed finite element methods for optimal control problem governed by semi linear parabolic equations with integral constraint. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is not discreted. Optimal error estimates in L2 are established for the state...

متن کامل

Minimax state estimation for linear discrete-time differential-algebraic equations

This paper presents a state estimation approach for an uncertain linear equation with a non-invertible operator in Hilbert space. The approach addresses linear equations with uncertain deterministic input and noise in the measurements, which belong to a given convex closed bounded set. A new notion of a minimax observable subspace is introduced. By means of the presented approach, new equations...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013