Performance of an exhaled nitric oxide and carbon dioxide sensor using quantum cascade laser-based integrated cavity output spectroscopy.
نویسندگان
چکیده
Exhaled nitric oxide (NO) is an important biomarker in asthma and other respiratory disorders. The optical performance of a NOCO(2) sensor employing integrated cavity output spectroscopy (ICOS) with a quantum cascade laser operating at 5.22 microm capable of real-time NO and CO(2) measurements in a single breath cycle is reported. A NO noise-equivalent concentration of 0.4 ppb within a 1-sec integration time is achieved. The off-axis ICOS sensor performance is compared to a chemiluminescent NO analyzer and a nondispersive infrared (NDIR) CO(2) absorption capnograph. Differences between the gas analyzers are assessed by the Bland-Altman method to estimate the expected variability between the gas sensors. The off-axis ICOS sensor measurements are in good agreement with the data acquired with the two commercial gas analyzers. This work demonstrates the performance characteristics and merits of mid-infrared spectroscopy for exhaled breath analysis.
منابع مشابه
Quantum cascade laser-based integrated cavity output spectroscopy of exhaled nitric oxide
A nitric oxide (NO) sensor employing a thermoelectrically cooled, continuous-wave, distributed feedback quantum cascade laser operating at 5.47 μm (1828 cm−1) and off-axis integrated cavity output spectroscopy was used to measure NO concentrations in exhaled breath. A minimum measurable concentration (3σ) of 3.6 parts-per-billion by volume (ppbv) of NO with a data-acquisition time of 4 s was de...
متن کاملSub-ppbv nitric oxide concentration measurements using cw thermoelectrically cooled quantum cascade laser-based integrated cavity output spectroscopy
A nitric oxide (NO) gas sensor based on a thermoelectrically cooled, continuous-wave, distributed feedback quantum cascade laser operating at 5.45 μm (1835 cm−1) and off-axis integrated cavity output spectroscopy combined with a wavelength-modulation technique was developed to determine NO concentrations at the sub-ppbv levels that are essential for a number of applications, such as medical dia...
متن کاملMid-infrared quantum cascade laser based off-axis integrated cavity output spectroscopy for biogenic nitric oxide detection.
Tunable-laser absorption spectroscopy in the mid-IR spectral region is a sensitive analytical technique for trace-gas quantification. The detection of nitric oxide (NO) in exhaled breath is of particular interest in the diagnosis of lower-airway inflammation associated with a number of lung diseases and illnesses. A gas analyzer based on a continuous-wave mid-IR quantum cascade laser operating ...
متن کاملBreath Analysis Using Laser Spectroscopic Techniques: Breath Biomarkers, Spectral Fingerprints, and Detection Limits
Breath analysis, a promising new field of medicine and medical instrumentation, potentially offers noninvasive, real-time, and point-of-care (POC) disease diagnostics and metabolic status monitoring. Numerous breath biomarkers have been detected and quantified so far by using the GC-MS technique. Recent advances in laser spectroscopic techniques and laser sources have driven breath analysis to ...
متن کاملSpectroscopic detection of biological NO with a quantum cascade laser.
Two configurations of a continuous wave quantum cascade distributed feedback laser-based gas sensor for the detection of NO at a parts per billion (ppb) concentration level, typical of biomedical applications, have been investigated. The laser was operated at liquid nitrogen temperature near lambda = 5.2 microns. In the first configuration, a 100 m optical path length multi-pass cell was employ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of biomedical optics
دوره 12 3 شماره
صفحات -
تاریخ انتشار 2007