Cardiac defects contribute to the pathology of spinal muscular atrophy models.

نویسندگان

  • Monir Shababi
  • Javad Habibi
  • Hsiao T Yang
  • Spencer M Vale
  • Will A Sewell
  • Christian L Lorson
چکیده

Spinal muscular atrophy (SMA) is an autosomal recessive disorder, which is the leading genetic cause of infantile death. SMA is the most common inherited motor neuron disease and occurs in approximately 1:6000 live births. The gene responsible for SMA is called Survival Motor Neuron-1 (SMN1). Interestingly, a human-specific copy gene is present on the same region of chromosome 5q, called SMN2. Motor neurons are the primary tissue affected in SMA. Although it is clear that SMA is a neurodegenerative disease, there are clinical reports that suggest that other tissues contribute to the overall phenotype, especially in the most severe forms of the disease. In severe SMA cases, a growing number of congenital heart defects have been identified upon autopsy. The most common defect is a developmental defect referred to as hypoplastic left heart. The purpose of this report is to determine whether cardiac tissue is altered in SMA models and whether this could contribute to SMA pathogenesis. Here we identified early-stage developmental defects in a severe model of SMA. Additionally, pathological responses including fibrosis and oxidative stress markers were observed shortly after birth in a less severe model of disease. Similarly, functional differences were detected between wild-type and early-stage SMA animals. Collectively, this work demonstrates the importance of cardiac development and function in these severe models of SMA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cardiac pathology in spinal muscular atrophy: a systematic review

BACKGROUND Hereditary proximal spinal muscular atrophy (SMA) is a severe neuromuscular disease of childhood caused by homozygous loss of function of the survival motor neuron (SMN) 1 gene. The presence of a second, nearly identical SMN gene (SMN2) in the human genome ensures production of residual levels of the ubiquitously expressed SMN protein. Alpha-motor neurons in the ventral horns of the ...

متن کامل

Drawing Word co-occurrence map of Spinal Muscular Atrophy disease

Introduction:  The purpose of this article is to evaluate the status of articles in the field of Spinal Muscular Atrophy According to the Scientometrics indices Word co-occurrence map of this field . Methods: The present study is an applied one with a quantitative approach and a descriptive approach. It has been done using scientometrics and the co-occurrence words analysis technique. Document...

متن کامل

Spinal Muscular Atrophy: A Short Review Article

Spinal muscular atrophy (SMA) is a genetic disorder which affect nervous system and is characterized with progressive distal motor neuron weakness. The survival motor neuron (SMN) protein level reduces in patients with SMA. Two different genes code survival motor neuron protein in human genome. Skeletal and intercostal muscles denervation lead to weakness, hypotony, hyporeflexia, respiratory fa...

متن کامل

More than a bystander: the contributions of intrinsic skeletal muscle defects in motor neuron diseases

Spinal muscular atrophy (SMA), amyotrophic lateral sclerosis (ALS), and spinal-bulbar muscular atrophy (SBMA) are devastating diseases characterized by the degeneration of motor neurons. Although the molecular causes underlying these diseases differ, recent findings have highlighted the contribution of intrinsic skeletal muscle defects in motor neuron diseases. The use of cell culture and anima...

متن کامل

Immune dysregulation may contribute to disease pathogenesis in spinal muscular atrophy mice

Spinal muscular atrophy (SMA) has long been solely considered a neurodegenerative disorder. However, recent work has highlighted defects in many other cell types that could contribute to disease aetiology. Interestingly, the immune system has never been extensively studied in SMA. Defects in lymphoid organs could exacerbate disease progression by neuroinflammation or immunodeficiency. Smn deple...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Human molecular genetics

دوره 19 20  شماره 

صفحات  -

تاریخ انتشار 2010