Mining rules from an incomplete dataset with a high missing rate
نویسندگان
چکیده
The problem of recovering missing values from a dataset has become an important research issue in the field of data mining and machine learning. In this thesis, we introduce an iterative missing-value completion method based on the RAR (Robust Association Rules) support values to extract useful association rules for inferring missing values in an iterative way. It consists of three phases. The first phase uses the association rules to roughly complete the missing values. The second phase iteratively reduces the minimum support to gather more association rules to complete the rest of missing values. The third phase uses the association rules from the completed dataset to correct the missing values that have been filled in. Experimental results show the proposed approaches have good accuracy and data recovery even when the missing-value rate is high. Submitted manuscript 2 / 27
منابع مشابه
Using a Data Mining Tool and FP-Growth Algorithm Application for Extraction of the Rules in two Different Dataset (TECHNICAL NOTE)
In this paper, we want to improve association rules in order to be used in recommenders. Recommender systems present a method to create the personalized offers. One of the most important types of recommender systems is the collaborative filtering that deals with data mining in user information and offering them the appropriate item. Among the data mining methods, finding frequent item sets and ...
متن کاملA Novel Algorithm for Association Rule Mining from Data with Incomplete and Missing Values
Missing values and incomplete data are a natural phenomenon in real datasets. If the association rules mine incomplete disregard of missing values, mistaken rules are derived. In association rule mining, treatments of missing values and incomplete data are important. This paper proposes novel technique to mine association rule from data with missing values from large voluminous databases. The p...
متن کاملDirect Mining of Rules from Data with Missing Values
The paper presents an approach to and technique for direct mining of binary data with missing values aiming at extraction of classification rules, whose premises are represented in a conjunctive form. This approach does not assume an imputation of missing values. The idea is (1) to generate two sets of rules serving as the upper and low bounds for any other sets of rules corresponding to all ar...
متن کاملPrediction of chronic kidney disease in Isfahan with extracting association rules using data mining techniques
Background: Millions of deaths occur around the world each year due to lack of access to appropriate treatment for chronic kidney disease patients. Given the importance and mortality rate of this disease, early and low-cost prediction is very important. The researchers intend to identify chronic kidney disease through the optimal combination of techniques used in different stages of data mining...
متن کاملAn Evolutionary Associative Contrast Rule Mining Method for Incomplete Database
A method for associative contrast rule mining from incomplete database is demonstrated to find interesting differences between two incomplete data sets. The method extracts rules like "if X then Y" is interesting only in the focusing class. The method has been developed using a basic structure of the evolutionary graph-based optimization technique and adopting a new evolutionary strategy to acc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Expert Syst. Appl.
دوره 38 شماره
صفحات -
تاریخ انتشار 2011