Differentiation of complex vapor mixtures using versatile DNA-carbon nanotube chemical sensor arrays.
نویسندگان
چکیده
Vapor sensors based on functionalized carbon nanotubes (NTs) have shown great promise, with high sensitivity conferred by the reduced dimensionality and exceptional electronic properties of the NT. Critical challenges in the development of NT-based sensor arrays for chemical detection include the demonstration of reproducible fabrication methods and functionalization schemes that provide high chemical diversity to the resulting sensors. Here, we outline a scalable approach to fabricating arrays of vapor sensors consisting of NT field effect transistors functionalized with single-stranded DNA (DNA-NT). DNA-NT sensors were highly reproducible, with responses that could be described through equilibrium thermodynamics. Target analytes were detected even in large backgrounds of volatile interferents. DNA-NT sensors were able to discriminate between highly similar molecules, including structural isomers and enantiomers. The sensors were also able to detect subtle variations in complex vapors, including mixtures of structural isomers and mixtures of many volatile organic compounds characteristic of humans.
منابع مشابه
Functionalized Carbon Nanotubes Produced by APCVD using Camphor
A simple chemical vapor deposition technique at atmospheric pressure (APCVD) is adopted to synthesize the aligned arrays of functionalized multi-walled carbon nanotubes (AMWCNTs) without using any carrier gas, at 230◦C, 750◦C and 850 ◦C. Camphor (C10H16O) is used as carbon source because this botanical hydrocarbon is chip and abundant which convert the CVD technique to a green method for produc...
متن کاملReduction of single-walled carbon nanotube diameter to sub-nm via feedstock
Vertically aligned single-walled carbon nanotube arrays were synthesized from dip-coated binary Co/Mo catalyst by no-flow chemical vapor deposition from either pure ethanol or acetonitrile as carbon feedstock. By changing to acetonitrile the mean diameter was reduced from 2.1 nm to less than 1.0 nm despite using identically prepared catalyst. The demonstrated diameter control on flat substrates...
متن کاملRNA Functionalized Carbon Nanotube for Chemical Sensing
We demonstrate a versatile class of nanoscale chemical sensors based on single stranded RNAs (ssRNAs) as the chemical recognition sites and single-walled carbon nanotube field effect transistors (SWNT-FETs) as the electronic readout components. The sensor responses differ in sign and magnitude depending on both the type of gaseous analyte and the sequence of ssRNA being used. Such rapid respons...
متن کاملMultifunctional chemical vapor sensors of aligned carbon nanotube and polymer composites.
Partially coating perpendicularly aligned carbon nanotube arrays with an appropriate polymer thin film along their tube length provides a novel concept for developing new sensors of high sensitivity, good selectivity, and excellent environmental stability for the detection of a broad class of chemical vapors with low power consumption. The absorption and desorption of chemical vapors by the pol...
متن کاملElectrochemical Deposition of Metallic and Semiconducting Nanowires for Nanoelectronics and Sensor Applications
Manipulation and control of matter at the nanoand atomic level are crucial for the success of nano-scale sensors and actuators. The ability to control and synthesize multilayer composite structures using carbon nanotubes that will enable to build electronic devices within a nanotube is still in its infancy. In this paper, we present results on selective electrochemical deposition of metals and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- ACS nano
دوره 7 3 شماره
صفحات -
تاریخ انتشار 2013