Differentiation of complex vapor mixtures using versatile DNA-carbon nanotube chemical sensor arrays.

نویسندگان

  • Nicholas J Kybert
  • Mitchell B Lerner
  • Jeremy S Yodh
  • George Preti
  • A T Charlie Johnson
چکیده

Vapor sensors based on functionalized carbon nanotubes (NTs) have shown great promise, with high sensitivity conferred by the reduced dimensionality and exceptional electronic properties of the NT. Critical challenges in the development of NT-based sensor arrays for chemical detection include the demonstration of reproducible fabrication methods and functionalization schemes that provide high chemical diversity to the resulting sensors. Here, we outline a scalable approach to fabricating arrays of vapor sensors consisting of NT field effect transistors functionalized with single-stranded DNA (DNA-NT). DNA-NT sensors were highly reproducible, with responses that could be described through equilibrium thermodynamics. Target analytes were detected even in large backgrounds of volatile interferents. DNA-NT sensors were able to discriminate between highly similar molecules, including structural isomers and enantiomers. The sensors were also able to detect subtle variations in complex vapors, including mixtures of structural isomers and mixtures of many volatile organic compounds characteristic of humans.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functionalized Carbon Nanotubes Produced by APCVD using Camphor

A simple chemical vapor deposition technique at atmospheric pressure (APCVD) is adopted to synthesize the aligned arrays of functionalized multi-walled carbon nanotubes (AMWCNTs) without using any carrier gas, at 230◦C, 750◦C and 850 ◦C. Camphor (C10H16O) is used as carbon source because this botanical hydrocarbon is chip and abundant which convert the CVD technique to a green method for produc...

متن کامل

Reduction of single-walled carbon nanotube diameter to sub-nm via feedstock

Vertically aligned single-walled carbon nanotube arrays were synthesized from dip-coated binary Co/Mo catalyst by no-flow chemical vapor deposition from either pure ethanol or acetonitrile as carbon feedstock. By changing to acetonitrile the mean diameter was reduced from 2.1 nm to less than 1.0 nm despite using identically prepared catalyst. The demonstrated diameter control on flat substrates...

متن کامل

RNA Functionalized Carbon Nanotube for Chemical Sensing

We demonstrate a versatile class of nanoscale chemical sensors based on single stranded RNAs (ssRNAs) as the chemical recognition sites and single-walled carbon nanotube field effect transistors (SWNT-FETs) as the electronic readout components. The sensor responses differ in sign and magnitude depending on both the type of gaseous analyte and the sequence of ssRNA being used. Such rapid respons...

متن کامل

Multifunctional chemical vapor sensors of aligned carbon nanotube and polymer composites.

Partially coating perpendicularly aligned carbon nanotube arrays with an appropriate polymer thin film along their tube length provides a novel concept for developing new sensors of high sensitivity, good selectivity, and excellent environmental stability for the detection of a broad class of chemical vapors with low power consumption. The absorption and desorption of chemical vapors by the pol...

متن کامل

Electrochemical Deposition of Metallic and Semiconducting Nanowires for Nanoelectronics and Sensor Applications

Manipulation and control of matter at the nanoand atomic level are crucial for the success of nano-scale sensors and actuators. The ability to control and synthesize multilayer composite structures using carbon nanotubes that will enable to build electronic devices within a nanotube is still in its infancy. In this paper, we present results on selective electrochemical deposition of metals and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ACS nano

دوره 7 3  شماره 

صفحات  -

تاریخ انتشار 2013