Quercetin and epigallocatechin gallate effects on the cell membranes biophysical properties correlate with their antioxidant potential.
نویسندگان
چکیده
Quercetin and epigallocatechin gallate are two of the most abundant polyphenols in dietary plants, including apples, onions, red wine and green tea. The bioactivity of polyphenols is linked to their ability to interact with cell membranes without being internalized. The aim of the present study was to assess the short-time effect of these polyphenols on membrane anisotropy and transmembrane potential of U937 monocytes and Jurkat T lymphoblasts. Results showed that quercetin and epigallocatechin gallate induced, after 20 minutes cell exposure, a dose-dependent increase of membrane anisotropy and polarization. Anisotropy increase was correlated with the reduction of lipid peroxidation. Our results could indicate that the antioxidant capacity of the tested polyphenols is due to their stabilizing effect on the cell membranes, thus contributing to cell protection in various pathologies and as adjuvant therapy in highly toxic treatment regimens.
منابع مشابه
Quercetin and Epigallocatechin Gallate Induce in Vitro a Dose-Dependent Stiffening and Hyperpolarizing Effect on the Cell Membrane of Human Mononuclear Blood Cells
The bioactivity of polyphenols is closely linked to their ability to interact with biological membranes. The study evaluates the in vitro effect of quercetin and epigallocatechin on the membrane anisotropy and transmembrane potential of peripheral blood mononuclear cells (PBMCs) isolated from 26 type 2 diabetes mellitus patients compared to 25 age matched controls. The in vitro assays were anal...
متن کاملImpact of Acute Phase Epigallocatechin-3-gallate Supplementation on Consciousness and S100B Serum Levels in TBI Patients: A Double Blind Randomized Clinical Trial
Background and Aim: Traumatic brain injury is one of the leading causes of mortality and disability in young adults. Epigallocatechin-3-gallate, the antioxidant compound of green tea, has been proposed to have antioxidant and anti-inflammatory properties. This study evaluates the potential effects of epigallocatechin-3-gallate on the early clinical outcome and serum S100B levels (biomarker for ...
متن کاملAnti-quorum sensing effects of Licochalcone A and Epigallocatechin-3-gallate against Salmonella Typhimurium from poultry sources
Quorum sensing (QS) is a cell density-dependent mechanism used by many pathogenic bacteria for regulating virulence gene expression. Inhibition or interruption of QS by medicinal plant remedies has been suggested as a new strategy for fighting against antibiotic-resistant bacteria. This study aimed to assess the impact of sub-inhibitory concentrations of licochalcone A (LAA) and epigallocatechi...
متن کاملResveratrol attenuates L-DOPA-induced hydrogen peroxide toxicity in neuronal cells.
A variety of polyphenol antioxidant compounds derived from natural products have demonstrated neuroprotective activity against neuronal cell death. The objective of this study was to investigate the effect of resveratrol (RESV) and bioflavonoids in attenuating hydrogen peroxide (H(2)O(2))-induced oxidative stress in neuronal cells. H2O2 levels were increased by the addition of L-3,4-dihydroxyph...
متن کاملA study on the targeting of ceramide metabolism by (-)-epicatechin gallate, catechin and quercetin in A-549 lung cancer cell line
Catechin, epicatechin gallate (ECG) and quercetin, as bioactive flavonoids, have been shown to possess anticarcinogenic effects. Ceramide plays an important role in killing tumor cells. Accordingly, the aim of this study was to clarify the involvement of these compounds in ceramide metabolism in A549 cancerous cell line. Spectrophotometer, cell culture and HPLC methods were used. Cell viability...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- General physiology and biophysics
دوره 31 1 شماره
صفحات -
تاریخ انتشار 2012