Lack of Enhanced Spinal Regeneration in Nogo-Deficient Mice

نویسندگان

  • Binhai Zheng
  • Carole Ho
  • Shuxin Li
  • Hans Keirstead
  • Oswald Steward
  • Marc Tessier-Lavigne
چکیده

The failure of regeneration of severed axons in the adult mammalian central nervous system is thought to be due partly to the presence of endogenous inhibitors of axon regeneration. The nogo gene encodes three proteins (Nogo-A, -B, and -C) that have been proposed to contribute to this inhibition. To determine whether deletion of nogo enhances regenerative ability, we generated two lines of mutant mice, one lacking Nogo-A and -B but not -C (Nogo-A/B mutant), and one deficient in all three isoforms (Nogo-A/B/C mutant). Although Nogo-A/B-deficient myelin has reduced inhibitory activity in a neurite outgrowth assay in vitro, tracing of corticospinal tract fibers after dorsal hemisection of the spinal cord did not reveal an obvious increase in regeneration or sprouting of these fibers in either mouse line, suggesting that elimination of Nogo alone is not sufficient to induce extensive axon regeneration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reassessment of corticospinal tract regeneration in Nogo-deficient mice.

The myelin-derived neurite growth inhibitor Nogo has been proposed to play a major role in blocking axon regeneration in the CNS after injuries. However, past studies have produced mixed results regarding the regenerative phenotype of various Nogo-deficient mouse lines after experimental spinal cord injury. Two lines did not display enhanced corticospinal tract (CST) regeneration, and one displ...

متن کامل

Nogo-A-deficient mice reveal strain-dependent differences in axonal regeneration.

Nogo-A, a membrane protein enriched in myelin of the adult CNS, inhibits neurite growth and regeneration; neutralizing antibodies or receptor blockers enhance regeneration and plasticity in the injured adult CNS and lead to improved functional outcome. Here we show that Nogo-A-specific knock-outs in backcrossed 129X1/SvJ and C57BL/6 mice display enhanced regeneration of the corticospinal tract ...

متن کامل

Assessing Spinal Axon Regeneration and Sprouting in Nogo-, MAG-, and OMgp-Deficient Mice

A central hypothesis for the limited capacity for adult central nervous system (CNS) axons to regenerate is the presence of myelin-derived axon growth inhibitors, the role of which, however, remains poorly understood. We have conducted a comprehensive genetic analysis of the three major myelin inhibitors, Nogo, MAG, and OMgp, in injury-induced axonal growth, including compensatory sprouting of ...

متن کامل

Paired immunoglobulin-like receptor B knockout does not enhance axonal regeneration or locomotor recovery after spinal cord injury.

Myelin components that inhibit axonal regeneration are believed to contribute significantly to the lack of axonal regeneration noted in the adult central nervous system. Three proteins found in myelin, Nogo, myelin-associated glycoprotein, and oligodendrocyte-myelin glycoprotein, inhibit neurite outgrowth in vitro. All of these proteins interact with the same receptors, namely, the Nogo recepto...

متن کامل

Genetic deletion of the Nogo receptor does not reduce neurite inhibition in vitro or promote corticospinal tract regeneration in vivo.

Axon regeneration failure in the adult mammalian CNS is attributed in part to the inhibitory nature of CNS myelin. Three myelin-associated, structurally distinct proteins, Nogo, myelin-associated glycoprotein, and oligodendrocyte myelin glycoprotein, have been implicated in this inhibition. Neuronal Nogo receptor (NgR) binds to each of the three inhibitors and has been proposed to mediate their...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuron

دوره 38  شماره 

صفحات  -

تاریخ انتشار 2003