Asymptotic Dynamics of Inertial Particles with Memory

نویسندگان

  • Gabriel Provencher Langlois
  • Mohammad Farazmand
  • George Haller
چکیده

Recent experimental and numerical observations have shown the significance of the Basset–Boussinesq memory term on the dynamics of small spherical rigid particles (or inertial particles) suspended in an ambient fluid flow. These observations suggest an algebraic decay to an asymptotic state, as opposed to the exponential convergence in the absence of the memory term. Here, we prove that the observed algebraic decay is a universal property of the Maxey–Riley equation. Specifically, the particle velocity decays algebraically in time to a limit that is O(ε)-close to the fluid velocity, where 0 < ε ≪ 1 is proportional to the square of the ratio of the particle radius to the fluid characteristic length scale. These results follow from a sharp analytic upper bound that we derive for the particle velocity. For completeness, we also present a first proof of the global existence and uniqueness of mild solutions to the Maxey–Riley equation, a nonlinear system of fractional differential equations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamics analysis of microparticles in inertial microfluidics for biomedical applications

Inertial microfluidics-based devices have recently attracted much interest and attention due to their simple structure, high throughput, fast processing and low cost. They have been utilised in a wide range of applications in microtechnology, especially for sorting and separating microparticles. This novel class of microfluidics-based devices works based on intrinsic forces, which cause micropa...

متن کامل

NOTES AND CORRESPONDENCE Inertial Particle Dynamics in a Hurricane

The motion of inertial (i.e., finite-size) particles is analyzed in a three-dimensional unsteady simulation of Hurricane Isabel. As established recently, the long-term dynamics of inertial particles in a fluid is governed by a reduced-order inertial equation, obtained as a small perturbation of passive fluid advection on a globally attracting slow manifold in the phase space of particle motions...

متن کامل

Memory effects in chaotic advection of inertial particles

A systematic investigation of the effect of the history force on particle advection is carried out for both heavy and light particles. General relations are given to identify parameter regions where the history force is expected to be comparable with the Stokes drag. As an illustrative example, a paradigmatic two-dimensional flow, the von Kármán flow is taken. For small (but not extremely small...

متن کامل

Aggregation and fragmentation dynamics of inertial particles in chaotic flows.

Inertial particles advected in chaotic flows often accumulate in strange attractors. While moving in these fractal sets they usually approach each other and collide. Here we consider inertial particles aggregating upon collision. The new particles formed in this process are larger and follow the equation of motion with a new parameter. These particles can in turn fragment when they reach a cert...

متن کامل

Extracting Dynamics Matrix of Alignment Process for a Gimbaled Inertial Navigation System Using Heuristic Dynamic Programming Method

In this paper, with the aim of estimating internal dynamics matrix of a gimbaled Inertial Navigation system (as a discrete Linear system), the discretetime Hamilton-Jacobi-Bellman (HJB) equation for optimal control has been extracted. Heuristic Dynamic Programming algorithm (HDP) for solving equation has been presented and then a neural network approximation for cost function and control input ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Nonlinear Science

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2015