Multi-dimensional K-anonymity based on Mapping for Protecting Privacy1

نویسندگان

  • Qian Wang
  • Min Sun
چکیده

Data release has privacy disclosure risk if not taking any protection policy. Although attributes that clearly identify individuals, such as Name, Identity Number, are generally removed or decrypted, attackers can still link these databases with other released database on attributes (Quasi-identifiers) to re-identify individual’s private information. K-anonymity is a significant method for privacy protection in microdata release. However, it is a NPhard problem for optimal k-anonymity on dataset with multiple attributes. Most partitions in k-anonymity at present are single-dimensional. Research on k-anonymity focuses on getting high quality anonymity while reducing the time complexity. This paper proposes a new multidimensional k-anonymity algorithm based on mapping and divide-and-conquer strategy. Multi-dimensional data are mapped to single-dimensional, and then k-anonymity on multiple attributes is implemented employing the divideand-conquer strategy in polynomial time. Divided dimension selection is prioritized based on information dependency, which significantly reduces the information loss. The experiment shows that the proposed algorithm is feasible and performs much better in k-anonymity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-dimensional k-anonymity Based on Mapping for Protecting Privacy

Data release has privacy disclosure risk if not taking any protection policy. Although attributes that clearly identify individuals, such as Name, Identity Number, are generally removed or decrypted, attackers can still link these databases with other released database on attributes (Quasi-identifiers) to re-identify individual’s private information. K-anonymity is a significant method for priv...

متن کامل

Protecting Privacy by Multi-dimensional K-anonymity

Privacy protection for incremental data has a great effect on data availability and practicality. Kanonymity is an important approach to protect data privacy in data publishing scenario. However, it is a NP-hard problem for optimal k-anonymity on dataset with multiple attributes. Most partitions in k-anonymity at present are single-dimensional. Now research on k-anonymity mainly focuses on gett...

متن کامل

k-ANONYMITY: A MODEL FOR PROTECTING PRIVACY1

Consider a data holder, such as a hospital or a bank, that has a privately held collection of person-specific, field structured data. Suppose the data holder wants to share a version of the data with researchers. How can a data holder release a version of its private data with scientific guarantees that the individuals who are the subjects of the data cannot be re-identified while the data rema...

متن کامل

Fast Data Anonymization with Low Information Loss

Recent research studied the problem of publishing microdata without revealing sensitive information, leading to the privacy preserving paradigms of k-anonymity and `-diversity. k-anonymity protects against the identification of an individual’s record. `-diversity, in addition, safeguards against the association of an individual with specific sensitive information. However, existing approaches s...

متن کامل

A Customizable k-Anonymity Model for Protecting Location Privacy

Continued advances in mobile networks and positioning technologies have created a strong market push for location-based services (LBSs). Examples include location-aware emergency services, location based service advertisement, and location sensitive billing. One of the big challenges in wide deployment of LBS systems is the privacy-preserving management of location-based data. Without safeguard...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011