Computational screening of one- and two-photon spectrally tuned channelrhodopsin mutants.
نویسندگان
چکیده
Optogenetics is by now a well-established field within neuroscience where neuro-response is controlled at the molecular level using the photochemical properties of channelrhodopsin (ChR). In this study the recently published X-ray structure of retinal inside the ChR binding pocket serves as the basis for conducting high-level polarizable embedding quantum mechanical/molecular mechanical (QM/MM) mutation studies with the aim of providing insight into the tuning mechanisms of this remarkable protein. The levels of theory applied are the recently developed PERI-CC2 and PE-DFT approaches. Their computational efficiency makes it possible to rapidly carry out a large number of spectral calculations. This is exploited to construct in silico mutated ChR variants which are characterized in terms of the location of the relevant excitation energy and the magnitude of the two-photon absorption cross section. In turn, this allows us to pinpoint the amino acids that have the largest electrostatic effect on the studied excited state properties. We show that a single/double site mutation strategy in ChR does not perturb the electronic properties of retinal to a degree that satisfies the experimental demand for a significant red-shift. With respect to non-linear absorption we conjecture that the recently synthesized ChETA variant possesses an even larger two-photon cross section than the C1C2 variant and it is thus an ideal candidate for further studies on the two-photon activation of ChR.
منابع مشابه
Color-tuned channelrhodopsins for multiwavelength optogenetics.
Channelrhodopsin-2 is a light-gated ion channel and a major tool of optogenetics. It is used to control neuronal activity via blue light. Here we describe the construction of color-tuned high efficiency channelrhodopsins (ChRs), based on chimeras of Chlamydomonas channelrhodopsin-1 and Volvox channelrhodopsin-1. These variants show superb expression and plasma membrane integration, resulting in...
متن کاملDirected Improvement of i-Photina Bioluminescence Properties, an Efficient Calcium-Regulated Photoprotein
Photoproteins are excellent reporter systems because they don’t have virtually background signal. Aequorin is the most well-known photoprotein. Three improved engineered photoproteins photina, i-photina and c-photina, were also recently developed and optimized for generation of Ca2+ mobilization assays precisely. The total light emission is greater than aequorin and their reacti...
متن کاملFast Scanning Two-Photon Microscopy
Fast scanning two-photon microscopy coupled with the use light activated ion channels provides the basis for fast imaging and stimulation in the characterization of in vivo neural networks. A two-photon microscope capable of fast scanning using acousto-optic deflectors was designed and implemented. The software controller was expanded so that random access scan in three dimensions could be hand...
متن کاملSingle-molecule switchable FRET
Two-photon microscopy offers unique advantages for excitation of channelrhodopsin-2 (ChR2)-expressing neurons, but previous attempts had limitations in terms of the axial and temporal resolution. Emiliani and colleagues now use a scanless approach that combines generalized phase contrast and temporal focusing to shape two-photon excitation patterns and trigger single action potentials or trains...
متن کاملSpectrally formulated finite element for vibration analysis of an Euler-Bernoulli beam on Pasternak foundation
In this article, vibration analysis of an Euler-Bernoulli beam resting on a Pasternak-type foundation is studied. The governing equation is solved by using a spectral finite element model (SFEM). The solution involves calculating wave and time responses of the beam. The Fast Fourier Transform function is used for temporal discretization of the governing partial differential equation into a se...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 15 20 شماره
صفحات -
تاریخ انتشار 2013