Image Deblurring, Gaussian Markov Random Fields, and Neumann Boundary Conditions

نویسندگان

  • JOHNATHAN M. BARDSLEY
  • MARYLESA HOWARD
  • JAMES G. NAGY
چکیده

In this paper we consider the inverse problem of image deblurring with Neumann boundary conditions. Regularization is incorporated by using Gaussian Markov random fields (GMRFs) to model an appropriate prior on the image pixel values. We provide a linear algebraic framework for GMRFs, and we establish an important connection between GMRFs studied in the statistical literature, and negative-Laplacian-based Tikhonov regularization used in the inverse problems and imaging communities. This connection allows us to show that the negative Laplacian Tikhonov regularization method corresponds to concrete statistical assumptions about the unknown pixel values conditioned on those of its neighbors. For image reconstruction, we implement a Markov Chain Monte Carlo (MCMC) method that yields samples of the unknown image x and of the regularization parameter α. From the samples, we compute the reconstructed image and quantify uncertainty in both x and α. Furthermore, we show that the approach can be implemented very efficiently by exploiting matrix structure, through the use of the discrete cosine transform.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

IMAGE SEGMENTATION USING GAUSSIAN MIXTURE MODEL

  Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we have learned Gaussian mixture model to the pixels of an image. The parameters of the model have estimated by EM-algorithm.   In addition pixel labeling corresponded to each pixel of true image is made by Bayes rule. In fact, ...

متن کامل

Efficient Mcmc-based Image Deblurringwith Neumann Boundary Conditions

The problem of uncertainty quantification (UQ) for inverse problems has become of significant recent interest. However, UQ requires more than the classical methods for computing solutions of inverse problems. In this paper, we take a Bayesian approach for the solution of ill-posed deconvolution problems with a symmetric convolution kernel and Neumann boundary conditions. The prior is modeled as...

متن کامل

­­Image Segmentation using Gaussian Mixture Model

Abstract: Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we used Gaussian mixture model to the pixels of an image. The parameters of the model were estimated by EM-algorithm.   In addition pixel labeling corresponded to each pixel of true image was made by Bayes rule. In fact,...

متن کامل

A Fast Algorithm for Deblurring Models with Neumann Boundary Conditions

Blur removal is an important problem in signal and image processing. The blurring matrices obtained by using the zero boundary condition (corresponding to assuming dark background outside the scene) are Toeplitz matrices for one-dimensional problems and block-Toeplitz–Toeplitzblock matrices for two-dimensional cases. They are computationally intensive to invert especially in the block case. If ...

متن کامل

Mean Field for Continuous High-Order MRFs

Probabilistic inference beyond MAP estimation is of interest in computer vision, both for learning appropriate models and in applications. Yet, common approximate inference techniques, such as belief propagation, have largely been limited to discrete-valued Markov random fields (MRFs) and models with small cliques. Oftentimes, neither is desirable from an application standpoint. This paper stud...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012