A new family of convex splines for data interpolation
نویسندگان
چکیده
This paper develops a new family of convexity-preserving splines of order n, hereby entitled the CPn-spline, that preserves convexity when derivatives at the data points satisfy some reasonable conditions. The spline comprises four components: a constant term, a first order term, and two nth order binomials. A slope-averaging-method is proposed for the general implementation of the new spline. Numerical results that allow for an assessment of the new spline are provided. In particular, a comparative analysis of the CPn-spline, the cubic spline, and of the Carnicer '92 spline is performed. By varying two parameters, the spline shape can be controlled at the local level, while other conventional means can be used to control the shape at the global level. The CPn-sptine has no singularities in the case where inflection points are present. Additionally, a less general form of the CPn-spline that applies to most practical cases can be implemented with extreme ease. © 1997 Elsevier Science B.V.
منابع مشابه
Interpolation of fuzzy data by using flat end fuzzy splines
In this paper, a new set of spline functions called ``Flat End Fuzzy Spline" is defined to interpolate given fuzzy data. Some important theorems on these splines together with their existence and uniqueness properties are discussed. Then numerical examples are presented to illustrate the differences between of using our spline and other interpolations that have been studied before.
متن کاملConstrained Interpolation via Cubic Hermite Splines
Introduction In industrial designing and manufacturing, it is often required to generate a smooth function approximating a given set of data which preserves certain shape properties of the data such as positivity, monotonicity, or convexity, that is, a smooth shape preserving approximation. It is assumed here that the data is sufficiently accurate to warrant interpolation, rather than least ...
متن کاملApplication of Fuzzy Bicubic Splines Interpolation for Solving Two-Dimensional Linear Fuzzy Fredholm Integral Equations
In this paper, firstly, we review approximation of fuzzy functions by fuzzy bicubic splines interpolation and present a new approach based on the two-dimensional fuzzy splines interpolation and iterative method to approximate the solution of two-dimensional linear fuzzy Fredholm integral equation (2DLFFIE). Also, we prove convergence analysis and numerical stability analysis ...
متن کاملINTERPOLATION BY HYPERBOLIC B-SPLINE FUNCTIONS
In this paper we present a new kind of B-splines, called hyperbolic B-splines generated over the space spanned by hyperbolic functions and we use it to interpolate an arbitrary function on a set of points. Numerical tests for illustrating hyperbolic B-spline are presented.
متن کاملOn Monotone and Convex Spline Interpolation*
This paper is concerned with the problem of existence of monotone and/or convex splines, having degree n and order of continuity k, which interpolate to a set of data at the knots. The interpolating splines are obtained by using Bernstein polynomials of suitable continuous piecewise linear functions; they satisfy the inequality k < n — k. The theorems presented here are useful in developing alg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computer Aided Geometric Design
دوره 15 شماره
صفحات -
تاریخ انتشار 1997