Iterative Usage of Fixed and Random Effect Models for Powerful and Efficient Genome-Wide Association Studies.

نویسندگان

  • Xiaolei Liu
  • Meng Huang
  • Bin Fan
  • Edward S Buckler
  • Zhiwu Zhang
چکیده

False positives in a Genome-Wide Association Study (GWAS) can be effectively controlled by a fixed effect and random effect Mixed Linear Model (MLM) that incorporates population structure and kinship among individuals to adjust association tests on markers; however, the adjustment also compromises true positives. The modified MLM method, Multiple Loci Linear Mixed Model (MLMM), incorporates multiple markers simultaneously as covariates in a stepwise MLM to partially remove the confounding between testing markers and kinship. To completely eliminate the confounding, we divided MLMM into two parts: Fixed Effect Model (FEM) and a Random Effect Model (REM) and use them iteratively. FEM contains testing markers, one at a time, and multiple associated markers as covariates to control false positives. To avoid model over-fitting problem in FEM, the associated markers are estimated in REM by using them to define kinship. The P values of testing markers and the associated markers are unified at each iteration. We named the new method as Fixed and random model Circulating Probability Unification (FarmCPU). Both real and simulated data analyses demonstrated that FarmCPU improves statistical power compared to current methods. Additional benefits include an efficient computing time that is linear to both number of individuals and number of markers. Now, a dataset with half million individuals and half million markers can be analyzed within three days.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

I-40: Male Genome Programming, Infertility and Cancer

Background: During male germ cells differentiation, genomewide re-organizations and highly specific programming of the male genome occur. These changes not only include the large-scale meiotic shuffling of genes, taking place in spermatocytes, but also a complete “re-packaging” of the male genome in post meiotic cells, leading to a highly compacted nucleo-protamine structure in the mature sperm...

متن کامل

Genome Wide Association Studies, Next Generation Sequencing and Their Application in Animal Breeding and Genetics: A Review

Recently genetic studies have been revolutionized by next generation sequencing (NGS) technology, and it is expected that the use of this technology will largely eliminate defects in the methods of association studies. The NGS technology is becoming the premier tool in genetics. However, at the moment the use of this method is limited especially in the livestock due to high cost and computation...

متن کامل

Iterative sure independence screening EM-Bayesian LASSO algorithm for multi-locus genome-wide association studies

Genome-wide association study (GWAS) entails examining a large number of single nucleotide polymorphisms (SNPs) in a limited sample with hundreds of individuals, implying a variable selection problem in the high dimensional dataset. Although many single-locus GWAS approaches under polygenic background and population structure controls have been widely used, some significant loci fail to be dete...

متن کامل

An efficient hierarchical generalized linear mixed model for pathway analysis of genome-wide association studies

MOTIVATION In genome-wide association studies (GWAS) of complex diseases, genetic variants having real but weak associations often fail to be detected at the stringent genome-wide significance level. Pathway analysis, which tests disease association with combined association signals from a group of variants in the same pathway, has become increasingly popular. However, because of the complexiti...

متن کامل

Improving power and accuracy of genome-wide association studies via a multi-locus mixed linear model methodology

Genome-wide association studies (GWAS) have been widely used in genetic dissection of complex traits. However, common methods are all based on a fixed-SNP-effect mixed linear model (MLM) and single marker analysis, such as efficient mixed model analysis (EMMA). These methods require Bonferroni correction for multiple tests, which often is too conservative when the number of markers is extremely...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • PLoS genetics

دوره 12 2  شماره 

صفحات  -

تاریخ انتشار 2016