Biostable beta-amino acid PK/PBAN analogs: agonist and antagonist properties.
نویسندگان
چکیده
The pyrokinin/pheromone biosynthesis activating neuropeptide (PK/PBAN) family plays a significant role in a multifunctional array of important physiological processes in insects. PK/PBAN analogs incorporating beta-amino acids were synthesized and evaluated in a pheromonotropic assay in Heliothis peltigera, a melanotropic assay in Spodoptera littoralis, a pupariation assay in Neobellieria bullata, and a hindgut contractile assay in Leucophaea maderae. Two analogs (PK-betaA-1 and PK-betaA-4) demonstrate greatly enhanced resistance to the peptidases neprilysin and angiotensin converting enzyme that are shown to degrade the natural peptides. Despite the changes to the PK core, analog PK-betaA-4 represents a biostable, non-selective agonist in all four bioassays, essentially matching the potency of a natural PK in pupariation assay. Analog PK-betaA-2 is a potent agonist in the melanotropic assay, demonstrating full efficacy at 1pmol. In some cases, the structural changes imparted to the analogs modify the physiological responses. Analog PK-betaA-3 is a non-selective agonist in all four bioassays. The analog PK-betaA-1 shows greater selectivity than parent PK peptides; it is virtually inactive in the pupariation assay and represents a biostable antagonist in the pheromonotropic and melanotropic assays, without the significant agonism of the parent hexapeptide. These analogs provide new, and in some cases, biostable tools to endocrinologists studying similarities and differences in the mechanisms of the variety of PK/PBAN mediated physiological processes. They also may provide leads in the development of PK/PBAN-based, insect-specific pest management agents.
منابع مشابه
Biostable b-amino acid PK/PBAN analogs: Agonist and antagonist properties
The pyrokinin/pheromone biosynthesis activating neuropeptide (PK/PBAN) family plays a significant role in a multifunctional array of important physiological processes in insects. PK/PBAN analogs incorporating b-amino acids were synthesized and evaluated in a pheromonotropic assay in Heliothis peltigera, a melanotropic assay in Spodoptera littoralis, a pupariation assay in Neobellieria bullata, ...
متن کاملA novel dihydroimidazoline, trans-Pro mimetic analog is a selective PK/PBAN agonist.
The pyrokinin/pheromone biosynthesis activating neuropeptide (PK/PBAN) family plays a significant role in the regulation of reproductive and developmental processes in a variety of insects. A transPro, type I beta-turn has been previously identified as important for the activity of PK/PBAN peptides. A PK/PBAN analog (PPK-Jo) incorporating a novel dihydroimidazole transPro mimetic motif was eval...
متن کاملAn amphiphilic, PK/PBAN analog is a selective pheromonotropic antagonist that penetrates the cuticle of a heliothine insect.
A linear pyrokinin (PK)/pheromone biosynthesis activating neuropeptide (PBAN) antagonist lead (RYF[dF]PRLa) was structurally modified to impart amphiphilic properties to enhance its ability to transmigrate the hydrophobic cuticle of noctuid moth species and yet retain aqueous solubility in the hemolymph to reach target PK/PBAN receptors within the internal insect environment. The resulting nove...
متن کاملPotent activity of a PK/PBAN analog with an (E)-alkene, trans-Pro mimic identifies the Pro orientation and core conformation during interaction with HevPBANR-C receptor.
The pyrokinin/pheromone biosynthesis activating neuropeptide (PK/PBAN) family plays a multifunctional role in an array of important physiological processes in insects, including regulation of sex pheromone biosynthesis in moths. A cyclic PK/PBAN analog (cyclo[NTSFTPRL]) retains significant activity on the pheromonotropic HevPBANR receptor from the tobacco budworm Heliothis virescens expressed i...
متن کاملRole of neuropeptides in sex pheromone production in moths.
Sex pheromone biosynthesis in many moth species is controlled by a cerebral neuropeptide, termed pheromone biosynthesis activating neuropeptide (PBAN). PBAN is a 33 amino acid C-terminally amidated neuropeptide that is produced by neuroendocrine cells of the subesophageal ganglion (SEG). Studies of the regulation of sex pheromone biosynthesis in moths have revealed that this function can be eli...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Peptides
دوره 30 3 شماره
صفحات -
تاریخ انتشار 2009