Hypoxia-induced paracrine regulation of vascular endothelial growth factor receptor expression.
نویسندگان
چکیده
Vascular endothelial growth factor (VEGF)/vascular permeability factor (VPF), an endothelial cell (EC)-specific mitogen, stimulates angiogenesis in vivo, particularly in ischemic regions. VEGF/VPF expression by cells of hypoxic tissues coincides with expression of its two receptors, KDR and flt-1, by ECs in the same tissues. We investigated whether hypoxia or hypoxia-dependent conditions operate in coordinating this phenomenon. Human umbilical vein and microvascular ECs were exposed to direct hypoxia or to medium conditioned (CM) by myoblasts maintained in hypoxia for 4 d. Control ECs were maintained in normoxia or normoxia-CM. Binding of 125I-VEGF to ECs was then evaluated. Hypoxic treatment of ECs had no effect on 125I-VEGF binding. However, treatment of ECs with hypoxia-CM produced a threefold increase in 125I-VEGF binding, with peak at 24 h (P < 0.001, ANOVA). Scatchard analysis disclosed that increased binding was due to a 13-fold increase in KDR receptors/cell, with no change in KDR affinity (Kd = 260 +/- 51 pM, normoxia-CM versus Kd = 281 +/- 94 pM, hypoxia-CM) and no change in EC number (35.6 +/- 5.9 x 10(3) ECs/cm2, normoxia-CM versus 33.5 +/- 5.5 x 10(3) ECs/cm2, hypoxia-CM). Similar results were obtained using CM from hypoxic smooth muscle cells. KDR upregulation was not prevented by addition to the hypoxia-CM of neutralizing antibodies against VEGF, tumor necrosis factor-alpha, transforming growth factor beta 1 or basic fibroblast growth factor. Similarly, addition of VEGF or lactic acid to the normoxia-CM had no effect on VEGF binding. We conclude that mechanism(s) initiated by hypoxia can induce KDR receptor upregulation in ECs. Hypoxic cells, normal or neoplastic, not only can produce VEGF/VPF, but can also modulate its effects via paracrine induction of VEGF/VPF receptors in ECs.
منابع مشابه
Physiological role of adenosine and its receptors in tissue hypoxia-induced
It is well known that the metabolic factors play an important role in the regulation of angiogenesis. Increased metabolic activity leads to decreased oxygen levels and causes tissue hypoxia. Hypoxia starts different signals to stimulate angiogenesis and promotes oxygen delivery to tissues. It has been suggested that released adenosine from hypoxic tissues plays a vital role in angiogenesis. ...
متن کاملThe Effect of Aerobic Training on Tumor Necrosis Factor alpha, Hypoxia-Inducible Factor-1 alpha & Vascular Endothelial Growth Factor Gene Expression in Cardiac Tissue of Diabetic Rats
Objective: The goal of this research was to determine the influence of 4 weeks aerobic training on gene expression of tumor necrosis factor alpha (TNF-α), hypoxia-inducible factor-1 alpha (HIF-1α) and vascular endothelial growth factor (VEGF) in the cardiac tissue of diabetic rats. Materials and Methods: In an experimental study, 30 male wistar rats were partitioned into three groups (n=10), d...
متن کاملParacrine upregulation of VEGF receptor mRNA in endothelial cells by hypoxia-exposed Hep G2 cells.
Although vascular endothelial growth factor (VEGF) plays a role in the growth of hypervascular tumors, mechanisms for paracrine regulation of its receptor expression on vascular endothelial cells remain unknown. This study aimed to investigate whether VEGF released from hypoxia-exposed Hep G2 cells alters expression of the two distinct receptors, kinase insert domain-containing receptor (KDR) a...
متن کاملP-189: Investigation of Vascular Endothelial Growth Factor Receptors Expression in Ectopic Pregnancy
Background: Ectopic pregnancy (EP) is a complication of conception in which the embryo implants outside of uterine cavity. The increasing incidence of serious maternal morbidity resulting from EP has prompted the search for biomarkers to aid in early diagnosis and take advantage of conservative treatments. One of the effective biomarkers in EP is vascular endothelial growth factor (VEGF). VEGF ...
متن کاملHypoxia-induced Paracrine Regulation
Vascular endothelial growth factor (VEGF)/vascular permeability factor (VPF), an endothelial cell (EC)–specific mitogen, stimulates angiogenesis in vivo, particularly in ischemic regions. VEGF/VPF expression by cells of hypoxic tissues coincides with expression of its two receptors, KDR and flt-1 , by ECs in the same tissues. We investigated whether hypoxia or hypoxia-dependent conditions opera...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of clinical investigation
دوره 97 2 شماره
صفحات -
تاریخ انتشار 1996