Hierarchical Sparse Bayesian Learning for Structural Health Monitoring with Incomplete Modal Data

نویسندگان

  • Yong Huang
  • James L. Beck
چکیده

For civil structures, structural damage due to severe loading events such as earthquakes, or due to long-term environmental degradation, usually occurs in localized areas of a structure. A new sparse Bayesian probabilistic framework for computing the probability of localized stiffness reductions induced by damage is presented that uses noisy incomplete modal data from before and after possible damage. This new approach employs system modal parameters of the structure as extra variables for Bayesian model updating with incomplete modal data. A specific hierarchical Bayesian model is constructed that promotes spatial sparseness in the inferred stiffness reductions in a way that is consistent with the Bayesian Ockham razor. To obtain the most plausible model of sparse stiffness reductions together with its uncertainty within a specified class of models, the method employs an optimization scheme that iterates among all uncertain parameters, including the hierarchical hyper-parameters. The approach has four important benefits: (1) it infers spatially sparse stiffness changes based on the identified modal parameters; (2) the uncertainty in the inferred stiffness reductions is quantified; (3) no matching of model and experimental modes is needed, and (4) solving the nonlinear eigenvalue problem of a structural model is not required. The proposed method is applied to two previously studied examples using simulated data: a ten-story shear-building and the three-dimensional braced-frame model from the Phase II Simulated Benchmark problem sponsored by the IASC-ASCE Task Group on Structural Health Monitoring. The results show that the occurrence of false-positive and false-negative damage detection is clearly reduced in the presence of modeling error (differences between the real structural behavior and the model of it). Furthermore, the identified most probable stiffness loss ratios are close to their actual values.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural Model Updating and Health Monitoring with Incomplete Modal Data Using Gibbs Sampler

A new Bayesian model updating approach is presented for linear structural models. It is based on the Gibbs sampler, a stochastic simulation method that decomposes the uncertain model parameters into three groups, so that the direct sampling from any one group is possible when conditional on the other groups and the incomplete modal data. This means that even if the number of uncertain parameter...

متن کامل

FEM Updating for Offshore Jacket Structures Using Measured Incomplete Modal Data

Marine industry requires continued development of new technologies in order to produce oil. An essential requirement in design is to be able to compare experimental data from prototype structures with predicted information from a corresponding analytical finite element model. In this study, structural model updating may be defined as the fit of an existing analytical model in the light of measu...

متن کامل

Bayesian Analysis of the Phase II IASC–ASCE Structural Health Monitoring Experimental Benchmark Data

A two-step probabilistic structural health monitoring approach is used to analyze the Phase II experimental benchmark studies sponsored by the IASC–ASCE Task Group on Structural Health Monitoring. This study involves damage detection and assessment of the test structure using experimental data generated by hammer impact and ambient vibrations. The two-step approach involves modal identification...

متن کامل

Structural Damage Identification Based on Substructure Sensitivity and l_1 Sparse Regularization

Sparsity constraints are now very popular to regularize inverse problems in the field of applied mathematics. Structural damage identification is a typical inverse problem of structural dynamics and Structural damage is a spatial sparse phenomenon, i.e., structural damage occurs, only part of elements or substructures are damaged. In this paper, a structural damage identification method based o...

متن کامل

Bayesian Probabilistic Approach to Structural Health Monitoring

A Bayesian probabilistic methodology for structural health monitoring is presented. The method uses a sequence of identified modal parameter data sets to compute the probability that continually updated model stiffness parameters are less than a specified fraction of the corresponding initial model stiffness parameters. In this approach, a high likelihood of reduction in model stiffness at a lo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015