CyberShake: A Physics-Based Seismic Hazard Model for Southern California

نویسندگان

  • ROBERT GRAVES
  • THOMAS H. JORDAN
  • SCOTT CALLAGHAN
  • EWA DEELMAN
  • EDWARD FIELD
  • GIDEON JUVE
  • CARL KESSELMAN
  • PHILIP MAECHLING
  • GAURANG MEHTA
  • KEVIN MILNER
  • DAVID OKAYA
  • PATRICK SMALL
  • KARAN VAHI
چکیده

CyberShake, as part of the Southern California Earthquake Center’s (SCEC) Community Modeling Environment, is developing a methodology that explicitly incorporates deterministic source and wave propagation effects within seismic hazard calculations through the use of physics-based 3D ground motion simulations. To calculate a waveform-based seismic hazard estimate for a site of interest, we begin with Uniform California Earthquake Rupture Forecast, Version 2.0 (UCERF2.0) and identify all ruptures within 200 km of the site of interest. We convert the UCERF2.0 rupture definition into multiple rupture variations with differing hypocenter locations and slip distributions, resulting in about 415,000 rupture variations per site. Strain Green Tensors are calculated for the site of interest using the SCEC Community Velocity Model, Version 4 (CVM4), and then, using reciprocity, we calculate synthetic seismograms for each rupture variation. Peak intensity measures are then extracted from these synthetics and combined with the original rupture probabilities to produce probabilistic seismic hazard curves for the site. Being explicitly site-based, CyberShake directly samples the ground motion variability at that site over many earthquake cycles (i.e., rupture scenarios) and alleviates the need for the ergodic assumption that is implicitly included in traditional empirically based calculations. Thus far, we have simulated ruptures at over 200 sites in the Los Angeles region for ground shaking periods of 2 s and longer, providing the basis for the first generation CyberShake hazard maps. Our results indicate that the combination of rupture directivity and basin response effects can lead to an increase in the hazard level for some sites, relative to that given by a conventional Ground Motion Prediction Equation (GMPE). Additionally, and perhaps more importantly, we find that the physics-based hazard results are much more sensitive to the assumed magnitude-area relations and magnitude uncertainty estimates used in the definition of the ruptures than is found in the traditional GMPE approach. This reinforces the need for continued development of a better understanding of earthquake source characterization and the constitutive relations that govern the earthquake rupture process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Scaling up workflow-based applications

a r t i c l e i n f o a b s t r a c t Scientific applications, often expressed as workflows are making use of large-scale national cyberinfrastructure to explore the behavior of systems, search for phenomena in large-scale data, and to conduct many other scientific endeavors. As the complexity of the systems being studied grows and as the data set sizes increase, the scale of the computational ...

متن کامل

The Prediction Problems of Earthquake System Science

Editor’s note: The following is the text of the SSA Presidential Address presented at the Annual Luncheon of the Seismological Society of America (SSA) Annual Meeting on 30 April 2014. The Seismological Society of America (SSA) has always been dedicated to understanding and reducing the earthquake threat. The Society was founded in 1906 “for the acquisition and diffusion of knowledge concerning...

متن کامل

Adjoint tomography of the southern California crust.

Using an inversion strategy based on adjoint methods, we developed a three-dimensional seismological model of the southern California crust. The resulting model involved 16 tomographic iterations, which required 6800 wavefield simulations and a total of 0.8 million central processing unit hours. The new crustal model reveals strong heterogeneity, including local changes of +/-30% with respect t...

متن کامل

Seismic Hazard Estimate from Background Seismicity in Southern California

We analyzed the historical seismicity in southern California to develop a rational approach for calculating the seismic hazard from background seismicity of magnitude 6.5 or smaller. The basic assumption for the approach is that future earthquakes will be clustered spatially near locations of historical mainshocks of magnitudes equal to or greater than 4. We analyzed the declustered California ...

متن کامل

Full-3-D Tomography for Crustal Structure in Southern California Based on the Scattering-Integral and the Adjoint-Wavefield Methods

We have successfully applied full-3-D tomography (F3DT) based on a combination of the scattering-integral method (SI-F3DT) and the adjoint-wavefield method (AW-F3DT) to iteratively improve a 3-D starting model, the Southern California Earthquake Center (SCEC) Community Velocity Model version 4.0 (CVM-S4). In F3DT, the sensitivity (Fréchet) kernels are computed using numerical solutions of the 3...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010