Weighted Patterns as a Tool for Improving the Hopfield Model

نویسندگان

  • Yakov M. Karandashev
  • Boris Kryzhanovsky
  • Leonid B. Litinskii
چکیده

We generalize the standard Hopfield model to the case when a weight is assigned to each input pattern. The weight can be interpreted as the frequency of the pattern occurrence at the input of the network. In the framework of the statistical physics approach we obtain the saddle-point equation allowing us to examine the memory of the network. In the case of unequal weights our model does not lead to the catastrophic destruction of the memory due to its overfilling (that is typical for the standard Hopfield model). The real memory consists only of the patterns with weights exceeding a critical value that is determined by the weights distribution. We obtain the algorithm allowing us to find this critical value for an arbitrary distribution of the weights, and analyze in detail some particular weights distributions. It is shown that the memory decreases as compared to the case of the standard Hopfield model. However, in our model the network can learn online without the catastrophic destruction of the memory.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

محاسبه ظرفیت شبکه عصبی هاپفیلد و ارائه روش عملی افزایش حجم حافظه

The capacity of the Hopfield model has been considered as an imortant parameter in using this model. In this paper, the Hopfield neural network is modeled as a Shannon Channel and an upperbound to its capacity is found. For achieving maximum memory, we focus on the training algorithm of the network, and prove that the capacity of the network is bounded by the maximum number of the ortho...

متن کامل

Performance Analysis of Hopfield Model of Neural Network with Evolutionary Approach for Pattern Recalling

ABSTRACT In the present paper, an effort has been made to compare and analyze the performance for pattern recalling with conventional hebbian learning rule and with evolutionary algorithm in Hopfield Model of feedback Neural Networks. A set of ten objects has been considered as the pattern set. In the Hopfield type of neural networks of associative memory, the weighted code of input patterns pr...

متن کامل

Estimation of Network Reliability for a Fully Connected Network with Unreliable Nodes and Unreliable Edges using Neuro Optimization

In this paper it is tried to estimate the reliability of a fully connected network of some unreliable nodes and unreliable connections (edges) between them. The proliferation of electronic messaging has been witnessed during the last few years. The acute problem of node failure and connection failure is frequently encountered in communication through various types of networks. We know that a ne...

متن کامل

Improving Associative Memory Capacity: One-Shot Learning in Multilayer Hopfield Networks

Our brains have an extraordinarily large capacity to store and recognize complex patterns after only one or a very few exposures to each item. Existing computational learning algorithms fall short of accounting for these properties of human memory; they either require a great many learning iterations, or they can do one-shot learning but suffer from very poor capacity. In this paper, we explore...

متن کامل

Storage of Natural Language Sentences in a Hopfield Network

This paper look at how the Hopfield neural network can be used to store and recall patterns constructed from natural language sentences. As a pattern recognition and storage tool, the Hopfield neural network has received much attention. This attention however has been mainly in the field of statistical physics due to the model’s simple abstraction of spin glass systems. A discussion is made of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 85 4 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2012