Signalling and Resource Allocation for Secure Communication in Gaussian Wireless Channels

نویسنده

  • Shabnam Shafiee
چکیده

Title of dissertation: SIGNALLING AND RESOURCE ALLOCATION FOR SECURE COMMUNICATION IN GAUSSIAN WIRELESS CHANNELS Shabnam Shafiee, Doctor of Philosophy, 2008 Dissertation directed by: Professor Şennur Ulukuş Department of Electrical and Computer Engineering Gaussian wireless channels are studied under two forms of security attacks: (i) the jamming attack, where the adversary is active and transmits corruptive signal, but is not interested in the content of the communication, (ii) the eavesdropping attack, where the adversary is passive and overhears the communication and tries to obtain the message that has been transmitted. The active attack is studied in a multi-user setting. The behavior of two users and one jammer in an additive white Gaussian channel (AWGN) with and without fading is investigated, when they participate in a non-cooperative zero-sum game, with the channel’s input/output mutual information as the objective function. We assume that the jammer can eavesdrop the channel and can use the information obtained to perform correlated jamming. We also differentiate between the availability of perfect and noisy information about the user signals at the jammer. Under various assumptions on the channel characteristics, and the extent of channel state information available at the users and the jammer, we show the existence, or otherwise non-existence of a simultaneously optimal set of strategies for the users and the jammer, and characterize those strategies whenever they exist. For the passive eavesdropping attack, we study multiple-input multiple-output (MIMO) AWGN channels. We first consider a multiple-input single-output (MISO) channel, where the transmitter has multiple antennas, while the receiver and the eavesdropper have single antennas each. We find achievable rates for this channel. With the channel input restricted to Gaussian signalling with no pre-processing of information, optimal transmission strategies that maximize the achievable secrecy rates are found, in terms of the input covariance matrices. It is shown that, under the optimal communication strategy, the system reduces to a single-input single-output (SISO) channel. We then extend the achievability results to fading Gaussian MISO channels. Finally, as a step toward generalizing the problem to one with multiple antennas at the receiver, we discuss the Gaussian 2-2-1 channel with a transmitter and a receiver with two antennas each, and a single antenna eavesdropper. We develop an achievability scheme similar to those of the SISO and MISO channels, and further show that in fact, it achieves the secrecy capacity of this 2-2-1 channel. Signalling and Resource Allocation for Secure Communication in Gaussian Wireless Channels by Shabnam Shafiee Dissertation submitted to the Faculty of the Graduate School of the University of Maryland, College Park in partial fulfillment of the requirements for the degree of Doctor of Philosophy 2008 Advisory Committee: Professor Şennur Ulukuş, Chair/Advisor Professor Prakash Narayan Professor Richard La Professor Steven Tretter Professor Lawrence Washington c © Copyright by Shabnam Shafiee 2008

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic Close to Optimal Resource Allocation in Centralized Multi-band Wireless Networks

This paper concerns sub-channel allocation in multi-user wireless networks with a view to increasing the network throughput. It is assumed there are some sub-channels to be equally divided among active links, such that the total sum rate increases, where it is assumed each link is subject to a maximum transmit power constraint. This problem is found to be a non-convex optimization problem and i...

متن کامل

A Secure Chaos-Based Communication Scheme in Multipath Fading Channels Using Particle Filtering

In recent years chaotic secure communication and chaos synchronization have received ever increasing attention. Unfortunately, despite the advantages of chaotic systems, Such as, noise-like correlation, easy hardware implementation, multitude of chaotic modes, flexible control of their dynamics, chaotic self-synchronization phenomena and potential communication confidence due to the very dynami...

متن کامل

Secure Communication in Shotgun Cellular Systems

In this paper, we analyze the secure connectivity in Shotgun cellular systems (SCS: Wireless communication systems with randomly placed base stations) by Poisson intrinsically secure communication graph (IS-graph), i.e., a random graph which describes the connections that are secure over a network. For a base-station in SCS, a degree of secure connections is determined over two channel models: ...

متن کامل

Achievable Rates, Optimal Signalling Schemes and Resource Allocation for Fading Wireless Channels

Title of dissertation: ACHIEVABLE RATES, OPTIMAL SIGNALLING SCHEMES AND RESOURCE ALLOCATION FOR FADING WIRELESS CHANNELS Onur Kaya, Doctor of Philosophy, 2005 Dissertation directed by: Professor Şennur Ulukuş Department of Electrical and Computer Engineering The proliferation of services involving the transmission of high rate data traffic over wireless channels makes it essential to overcome t...

متن کامل

The Role of Regulatory in Price Control and Spectrum Allocation to Competing Wireless Access Networks

With the rapid growth of wireless access networks, various providers offer their services using different technologies such as Wi-Fi, Wimax, 3G, 4G and so on. These networks compete for the scarce wireless spectrum. The spectrum is considered to be a scarce resource moderated by the spectrum allocation regulatory (“regulatory” for short) which is the governance body aiming to maximize the socia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008