Dynamically Tunable Plasmon-Induced Transparency in On-chip Graphene-Based Asymmetrical Nanocavity-Coupled Waveguide System
نویسندگان
چکیده
A graphene-based on-chip plasmonic nanostructure composed of a plasmonic bus waveguide side-coupled with a U-shaped and a rectangular nanocavities has been proposed and modeled by using the finite element method in this paper. The dynamic tunability of the plasmon-induced transparency (PIT) windows has been investigated. The results reveal that the PIT effects can be tuned via modifying the chemical potential of the nanocavities and plasmonic bus waveguide or by varying the geometrical parameters including the location and width of the rectangular nanocavity. Further, the proposed plasmonic nanostructure can be used as a plasmonic refractive index sensor with a sensing sensibility of 333.3 nm/refractive index unit (RIU) at the the PIT transmission peak. Slow light effect is also realized in the PIT system. The proposed nanostructure may pave a new way towards the realization of graphene-based on-chip integrated nanophotonic devices.
منابع مشابه
On-chip plasmon-induced transparency based on plasmonic coupled nanocavities
On-chip plasmon-induced transparency offers the possibility of realization of ultrahigh-speed information processing chips. Unfortunately, little experimental progress has been made to date because it is difficult to obtain on-chip plasmon-induced transparency using only a single meta-molecule in plasmonic circuits. Here, we report a simple and efficient strategy to realize on-chip plasmon-indu...
متن کاملTunable Multiple Plasmon-Induced Transparencies Based on Asymmetrical Graphene Nanoribbon Structures
We present plasmonic devices, consisting of periodic arrays of graphene nanoribbons (GNRs) and a graphene sheet waveguide, to achieve controllable plasmon-induced transparency (PIT) by numerical simulation. We analyze the bright and dark elements of the GNRs and graphene-sheet waveguide structure. Results show that applying the gate voltage can electrically tune the PIT spectrum. Adjusting the ...
متن کاملActive tunable plasmonically induced polarization conversion in the THz regime
A plasmon-induced polarization conversion (PIPC) structure based on periodically patterned graphene was demonstrated in the THz regime. By varying the Fermi level of two connected T-shape graphene strips through the electrostatic gating, the peak frequency and the group index in the transparency window can be tuned, which is good agreement with the coupled Lorentz oscillator model. Due to inter...
متن کاملDual-band, Dynamically Tunable Plasmonic Metamaterial Absorbers Based on Graphene for Terahertz Frequencies
In this paper, a compact plasmonic metamaterial absorber for terahertz frequencies is proposed and simulated. The absorber is based on metamaterial graphene structures, and benefits from dynamically controllable properties of graphene. Through patterning graphene layers, plasmonic resonances are tailored to provide a dual band as well as an improved bandwidth absorption. Unit cell of the design...
متن کاملPeak modulation in multicavity-coupled graphene-based waveguide system
Plasmonically induced transparency (PIT) in a multicavity-coupled graphene-based waveguide system is investigated theoretically and numerically. By using the finite element method (FEM), the multiple mode effect can be achieved, and blue shift is exhibited by tunable altering the chemical potential of the monolayer graphene. We find that the increasing number of the graphene rectangle cavity (G...
متن کامل