Business-Intelligence Mining of Large Decentralized Multimedia Datasets with a Distributed Multi-Agent System
نویسنده
چکیده
The rapid generation of high volume and a broad variety of data from the application of new technologies pose challenges for the generation of business-intelligence. Most organizations and business owners need to extract data from multiple sources and apply analytical methods for the purposes of developing their business. Therefore, the recently decentralized data management environment is relying on a distributed computing paradigm. While data are stored in highly distributed systems, the implementation of distributed data-mining techniques is a challenge. The aim of this technique is to gather knowledge from every domain and all the datasets stemming from distributed resources. As agent technologies offer significant contributions for managing the complexity of distributed systems, we consider this for next-generation data-mining processes. To demonstrate agent-based business intelligence operations, we use agent-oriented modeling techniques to develop a new artifact for mining massive datasets. Keywords—Agent-oriented modeling, business Intelligence management, distributed data mining, multi-agent system.
منابع مشابه
Distributed multi-agent Load Frequency Control for a Large-scale Power System Optimized by Grey Wolf Optimizer
This paper aims to design an optimal distributed multi-agent controller for load frequency control and optimal power flow purposes. The controller parameters are optimized using Grey Wolf Optimization (GWO) algorithm. The designed optimal distributed controller is employed for load frequency control in the IEEE 30-bus test system with six generators. The controller of each generator is consider...
متن کاملDistributed data mining for e-business
In the internet-based e-business environment, most business data are distributed, heterogeneous and private. To achieve true business intelligence, mining large amounts of distributed data is necessary. Through a thorough literature review, this paper identifies four main issues in distributed data mining (DDM) systems for e-business and classifies modern DDM systems into three classes with rep...
متن کاملAn Online Q-learning Based Multi-Agent LFC for a Multi-Area Multi-Source Power System Including Distributed Energy Resources
This paper presents an online two-stage Q-learning based multi-agent (MA) controller for load frequency control (LFC) in an interconnected multi-area multi-source power system integrated with distributed energy resources (DERs). The proposed control strategy consists of two stages. The first stage is employed a PID controller which its parameters are designed using sine cosine optimization (SCO...
متن کاملMulti Agent-based Distributed Data Mining: an over View
Data mining technology has emerged as a means for identifying patterns and trends from large quantities of data. The Data Mining technology normally adopts data integration method to generate Data warehouse,on which to gather all data into a central site, and then run an algorithm against that data to extract the useful Module Prediction and knowledge evaluation. However, a single data-mining t...
متن کاملCooperative Kernel-Based Forecasting in Decentralized Multi-Agent Systems for Urban Traffic Networks
The distributed and often decentralised nature of complex stochastic traffic systems having a large amount of distributed data can be represented well by multi-agent architecture. Traditional centralized data mining methods are often very expensive or not feasible because of transmission limitations that lead to the need of the development of distributed or even decentralized data mining method...
متن کامل