RNA Aptamers as Molecular Tools to Study the Functionality of the Hepatitis C Virus CRE Region.
نویسندگان
چکیده
BACKGROUND Hepatitis C virus (HCV) contains a (+) ssRNA genome with highly conserved structural, functional RNA domains, many of them with unknown roles for the consecution of the viral cycle. Such genomic domains are candidate therapeutic targets. This study reports the functional characterization of a set of aptamers targeting the cis-acting replication element (CRE) of the HCV genome, an essential partner for viral replication and also involved in the regulation of protein synthesis. METHODS Forty-four aptamers were tested for their ability to interfere with viral RNA synthesis in a subgenomic replicon system. Some of the most efficient inhibitors were further evaluated for their potential to affect the recruitment of the HCV RNA-dependent RNA polymerase (NS5B) and the viral translation in cell culture. RESULTS Four aptamers emerged as potent inhibitors of HCV replication by direct interaction with functional RNA domains of the CRE, yielding a decrease in the HCV RNA levels higher than 90%. Concomitantly, one of them also induced a significant increase in viral translation (>50%). The three remaining aptamers efficiently competed with the binding of the NS5B protein to the CRE. CONCLUSIONS Present findings confirm the potential of the CRE as an anti-HCV target and support the use of aptamers as molecular tools for investigating the functionality of RNA domains in viral genomes.
منابع مشابه
Molecular detection of hepatitis delta virus in blood donors with RT-PCR
Abstract Background and Objective: Hepatitis delta virus is an imperfect virus with RNA and its activity depends on the presence of hepatitis B virus. This virus can lead to acute and chronic diseases in the liver. This study aimed to detect the hepatitis delta virus in blood donors with positive Hepatitis B Surface Antigens (HBsAg). Material and Methods: In this Study, 350 serum sa...
متن کاملCloning and expression of NS3 helicase fragment of hepatitis C virus and the study of its immunoreactivity in HCV infected patients
Objective(s): Hepatitis C is a major cause of liver failure worldwide. Current therapies applied for this disease are not fully effective and produce side effects in most cases. Non-structural protein 3 helicase (NS3) of HCV is one of the key enzymes in viral replication and infection. Therefore, this region is a promising target to design new drugs and therapies against HCV infection. The aim ...
متن کاملDetection of Pre-treatment mutations leading to resistance to direct hepatitis C virus blocking drugs in patients with chronic hepatitis C
Background and objective: Human is the only host of hepatitis C virus. This virus has a positive single stranded RNA and lipoprotein envelop that has 7 confirmed genotypes. According to studies, genotypes 1a, 3a and 1b are the most common genotypes in Iran. No effective vaccine against HCV infection has been developed instead, advances in antiviral treatment using drugs that directly affect spe...
متن کاملAnti-HCV RNA Aptamers Targeting the Genomic cis-Acting Replication Element
Hepatitis C virus (HCV) replication is dependent on the existence of several highly conserved functional genomic RNA domains. The cis-acting replication element (CRE), located within the 3' end of the NS5B coding region of the HCV genome, has been shown essential for efficient viral replication. Its sequence and structural features determine its involvement in functional interactions with viral...
متن کاملMolecular Detection of HGV RNA in Chronic Hepatitis Patients from Afzalipoor General Hospital in Kerman, Iran
Background and Aims: Viral hepatitis is a global health problem with a high mortality rate. Recently, a new Flavi-like virus, provisionally named hepatitis G virus (HGV), has been described. HGV does not induce an immune response that is consistently detectable by using recombinant proteins from prokaryotic expression, therefore studies have been conducted by using polymerase chain reaction (...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecules
دوره 20 9 شماره
صفحات -
تاریخ انتشار 2015