Sampling and Reconstruction driven by Sparsity Models: Theory and Applications
نویسنده
چکیده
It has been shown recently that it is possible to sample classes of non-bandlimited signals which we call signals with Finite Rate of Innovation (FRI). Perfect reconstruction is possible based on a set of suitable measurements and this provides a sharp result on the sampling and reconstruction of sparse continuous-time signals. In this paper, we first review the basic theory and results on sampling signals with finite rate of innovation. We then discuss variations of the above framework to handle noise and model mismatch. Finally, we present some applications of this emerging sampling theory.
منابع مشابه
A NOVEL FUZZY-BASED SIMILARITY MEASURE FOR COLLABORATIVE FILTERING TO ALLEVIATE THE SPARSITY PROBLEM
Memory-based collaborative filtering is the most popular approach to build recommender systems. Despite its success in many applications, it still suffers from several major limitations, including data sparsity. Sparse data affect the quality of the user similarity measurement and consequently the quality of the recommender system. In this paper, we propose a novel user similarity measure based...
متن کاملBeyond incoherence: stable and robust sampling strategies for compressive imaging
In many signal processing applications, one wishes to acquire images that are sparse in transform domains such as spatial finite differences or wavelets using frequency domain samples. For such applications, overwhelming empirical evidence suggests that superior image reconstruction can be obtained through variable density sampling strategies that concentrate on lower frequencies. The wavelet a...
متن کاملAdvances in compressed sensing for magnetic resonance imaging
Magnetic resonance imaging (MRI) is a non-invasive imaging modality, which offers high spatial resolution and excellent soft tissue contrast without employing ionizing radiation. MRI is sensitive to a wide range of contrast mechanisms that allow assessment of both morphology and physiology, making it a modality of choice for many clinical applications. A major limitation of MRI is that data acq...
متن کاملInformation-Theoretic Characterization and Undersampling Ratio Determination for Compressive Radar Imaging in a Simulated Environment
Assuming sparsity or compressibility of the underlying signals, compressed sensing or compressive sampling (CS) exploits the informational efficiency of under-sampled measurements for increased efficiency yet acceptable accuracy in information gathering, transmission and processing, though it often incurs extra computational cost in signal reconstruction. Shannon information quantities and theo...
متن کاملBlock-Based Compressive Sensing Using Soft Thresholding of Adaptive Transform Coefficients
Compressive sampling (CS) is a new technique for simultaneous sampling and compression of signals in which the sampling rate can be very small under certain conditions. Due to the limited number of samples, image reconstruction based on CS samples is a challenging task. Most of the existing CS image reconstruction methods have a high computational complexity as they are applied on the entire im...
متن کامل