On the Pólya Enumeration Theorem

نویسنده

  • L. G. Fel
چکیده

Simple formulas for the number of different cyclic and dihedral necklaces containing nj beads of the j-th color, j ≤ m and ∑m j=1 nj = N , are derived. Among a vast number of counting problems one of the most popular is a necklace enumeration. A cyclic necklace is a coloring in m colors of the vertices of a regular N–gon, where two colorings are equivalent if one can be obtained from the other by a cyclic symmetry CN , e.g. colored beads are placed on a circle, and the circle may be rotated (without reflections). A basic enumeration problem is then: for given m and N = ∑m j=1 nj, how many different cyclic necklaces containing nj beads of the j-th color are there. The answer follows by an application of the Pólya’s theorem [1]: the number γ(CN ,n m) of different cyclic necklaces is the coefficient of x1 1 · . . . · x nm m in the cycle index ZCN (xi) = 1 N ∑ g|N φ(g)X g , Xg = x g 1 + . . .+ x g m , (1) where φ(g) denotes the Euler totient function and nm denotes a tuple (n1, . . . , nm). In this article we prove that γ (CN ,n ) = 1 N ∑ d|∆ φ(d)P (k) , where P (k) = (k1 + . . .+ km)! ∏m j=1 kj! , kj = nj d , (2) and ∆ denotes a great common divisor gcdnm of the tuple nm. We denote also km = (k1, . . . , km). Note that the term x1 1 · . . . · x nm m does appear only once in the multinomial series expansion (MSE) of (1) with a weight P (nm) when g = 1, X 1 −→ P (n ) x1 1 · . . . · x nm m , where N = n1 + . . . + nm . (3) Show that for g > 1 the polynomial ZCN (xi) contributes in γ (CN ,n m) if and only if ∆ > 1. We prove that if g|N and g 6 |∆ then the term x1 1 · . . . · x nm m does not appear in MSE of (1). 1 Denote N/g = L, 1 < L < N and consider MSE of (1) X g = l1+···+lm=L ∑ li≥0 P (l) x1 1 · . . . · x glm m , (4) where lm denotes a tuple (l1, . . . , lm). However MSE in (4) does not contribute in γ (CN ,n m) since g 6 |∆, i.e. we cannot provide such g that gli = ni holds for all i = 1, . . . ,m. Thus, we have reduced expression (1) by summing only over the divisors d of ∆, ZCN (xi) = 1 N ∑ d|∆ φ(d)X N/d d . (5) Denoting kj = nj/d, N/d = K = k1 + . . . + km, and considering MSE of (5) we obtain X d −→ P (k ) x1 1 · . . . · x dkm m = P (k ) x1 1 · . . . · x nm m . (6) Combining (5) and (6) we arrive at (2). It is easy to extend the explicit formula (2) to the case of dihedral necklaces where two colorings are equivalent if one can be obtained from the other by a dihedral symmetry DN , e.g. colored beads are placed on a circle, and the circle may be rotated and reflected. Start with the cycle indices [1] 2ZDN (xi) = ZCN (xi) + 

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maximum Entropy and Maximum Probability

Sanov’s Theorem and the Conditional Limit Theorem (CoLT) are established for a multicolor Pólya Eggenberger urn sampling scheme, giving the Pólya divergence and the Pólya extension to the Maximum Relative Entropy (MaxEnt) method. Pólya MaxEnt includes the standard MaxEnt as a special case. The universality of standard MaxEnt advocated by an axiomatic approach to inference for inverse problems i...

متن کامل

^-divisibility and a Theorem of Lorentz and Shimogaki

The Brudnyi-Krugljak theorem on the if-divisibility of Gagliardo couples is derived by elementary means from earlier results of LorentzShimogaki on equimeasurable rearrangements of measurable functions. A slightly stronger form of Calderón's theorem describing the Hardy-LittlewoodPólya relation in terms of substochastic operators (which itself generalizes the classical Hardy-Littlewood-Pólya re...

متن کامل

The Pólya - Aeppli distribution of order k

In this paper the Pólya Aeppli distribution of order k as a compound Poisson distribution is defined. The probability mass function and recursion formulas are given. We consider the interpretation of the distribution and a definition of the Pólya Aeppli process of order k.

متن کامل

Zero Biasing and Growth Processes

The tools of zero biasing are adapted to yield a general result suitable for analyzing the behavior of certain growth processes. The main theorem is applied to prove central limit theorems, with explicit error terms in the L metric, for certain statistics of the Jack measure on partitions and for the number of balls drawn in a Pólya-Eggenberger urn process.

متن کامل

On the Euler-lagrange Equation of a Functional by Pólya and Szegö

We study the regularity properties of generalized solutions of the EulerLagrange equation of a functional involving capacity and perimeter, related to a conjecture of Pólya and Szegö.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Intelligent Information Management

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2009