Quantitative Genetics, Genomics, and the Future of Plant Breeding

نویسنده

  • Bruce Walsh
چکیده

Quantitative genetics (in its various guises) has been the intellectual cornerstone of plant breeding for close to 100 years. While the roots of Mendelian genetics, and its rediscovery, are firmly in the hands of plant breeders, it was Fisher's (1918) variance decomposition paper that marks the modern foundation for both quantitative genetics and plant breeding. We are now embarking on the age of genomics, and so it is reasonable to speculate on the implications of both partial and whole genome sequences for quantitative genetics. Likewise, the tools of modern quantitative genetics have been developed in four separate fields: plant breeding, animal breeding, human genetics, and evolutionary genetics. Unfortunately, for a variety of reasons, migration of information between these fields has not been what it should be. Thus, it is also an appropriate time to inquire whether useful tools have been developed in these other fields that may be helpful to plant breeders of today and the genomics-based breeders of the near future.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A QTL linkage map of safflower for yield under drought stress at reproductive stage

 This study reports QTL mapping for seed yield and its components in safflower genome under drought stress. The F3 families derived from the cross Mex.22-191 (tolerant) × IL.111 (sensitive) were evaluated for agronomic traits in safflower. Drought tolerance was evaluated during 10% of the flowering stage. To identify QTLs underlying tolerance to drought, mapping quantitative trait loci (QTLs) w...

متن کامل

A Comparison of the Sensitivity of the BayesC and Genomic Best Linear Unbiased Prediction(GBLUP) Methods of Estimating Genomic Breeding Values under Different Quantitative Trait Locus(QTL) Model Assumptions

The objective of this study was to compare the accuracy of estimating and predicting breeding values using two diverse approaches, GBLUP and BayesC, using simulated data under different quantitative trait locus(QTL) effect distributions. Data were simulated with three different distributions for the QTL effect which were uniform, normal and gamma (1.66, 0.4). The number of QTL was assumed to be...

متن کامل

From plant genomics to breeding practice.

New alleles are constantly accumulated during intentional crop selection. The molecular understanding of these alleles has stimulated new genomic approaches to mapping quantitative trait loci (QTL) and haplotype multiplicity of the genes concerned. A limited number of quantitative trait nucleotides responsible for QTL variation have been described, but an acceleration in their rate of discovery...

متن کامل

Improvement of qualitative and quantitative traits in soybean [Glycine Max (L.) Merrill] through gamma irradiation

Gamma irradiation was used at different doses (80, 160 and 240 Gy) on Glycine Max (L.) Merrill cv. Hill homogenous seeds. A single suitable M2 plant was selected and evaluated at M3 and M4 along with its parent and three other varieties as control in RCBD experiment in Sari Agricultural Sciences and Natural Resources University’s experimental field. M-8...

متن کامل

The Future of Plant Breeding

A symposium was hosted 10 to 11 Mar. 2005 at Michigan State University to discuss the future of plant breeding education at public institutions. Plant breeding remains a vibrant, multidisciplinary science characterized by its ability to reinvent itself by absorbing and utilizing novel scientific findings and technical approaches. A contemporary breeding curriculum should include hands-on experi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001