Introducing high-throughput sequencing into mainstream genetic diagnosis practice in inherited platelet disorders
نویسندگان
چکیده
Inherited platelet disorders are a heterogeneous group of rare diseases, caused by inherited defects in platelet production and/or function. Their genetic diagnosis would benefit clinical care, prognosis and preventative treatments. Until recently, this diagnosis has usually been performed via Sanger sequencing of a limited number of candidate genes. High-throughput sequencing is revolutionizing the genetic diagnosis of diseases, including bleeding disorders. We have designed a novel high-throughput sequencing platform to investigate the unknown molecular pathology in a cohort of 82 patients with inherited platelet disorders. Thirty-four (41.5%) patients presented with a phenotype strongly indicative of a particular type of platelet disorder. The other patients had clinical bleeding indicative of platelet dysfunction, but with no identifiable features. The high-throughput sequencing test enabled a molecular diagnosis in 70% of these patients. This sensitivity increased to 90% among patients suspected of having a defined platelet disorder. We found 57 different candidate variants in 28 genes, of which 70% had not previously been described. Following consensus guidelines, we qualified 68.4% and 26.3% of the candidate variants as being pathogenic and likely pathogenic, respectively. In addition to establishing definitive diagnoses of well-known inherited platelet disorders, high-throughput sequencing also identified rarer disorders such as sitosterolemia, filamin and actinin deficiencies, and G protein-coupled receptor defects. This included disease-causing variants in DIAPH1 (n=2) and RASGRP2 (n=3). Our study reinforces the feasibility of introducing high-throughput sequencing technology into the mainstream laboratory for the genetic diagnostic practice in inherited platelet disorders.
منابع مشابه
High-throughput sequencing for rapid diagnosis of inherited platelet disorders: a case for a European consensus.
متن کامل
Inherited platelet disorders: toward DNA-based diagnosis.
Variations in platelet number, volume, and function are largely genetically controlled, and many loci associated with platelet traits have been identified by genome-wide association studies (GWASs).(1) The genome also contains a large number of rare variants, of which a tiny fraction underlies the inherited diseases of humans. Research over the last 3 decades has led to the discovery of 51 gene...
متن کاملIdentification of the rs797045105 in the SERAC1 gene by Whole-Exome Sequencing in a Patient Suspicious of MEGDEL Syndrome
Whole Exome Sequencing (WES) has been increasingly utilized in genetic determinants of various inherited diseases. We identified a new variation in SERAC1 as the cause of 3-Methylglutaconic Aciduria (MEG), Deafness (D), Encephalopathy (E), and Leigh-like (L), MEGDEL syndrome using WES. We found an insertion, rs797045105 (chr6, 158571484, C>CCATG), in the SERAC1 gene with homozygous genotype in ...
متن کاملGenomics of platelet disorders.
Genetic diagnosis in families with inherited platelet disorders (IPD) is not performed widely because of the genetic heterogeneity of this group of disorders and because in most cases, it is not possible to select single candidate genes for analysis using clinical and laboratory phenotypes. Next-generation sequencing (NGS) technology has revolutionized the scale and cost-effectiveness of geneti...
متن کاملApplication of whole‐exome sequencing to direct the specific functional testing and diagnosis of rare inherited bleeding disorders in patients from the Öresund Region, Scandinavia
Rare inherited bleeding disorders (IBD) are a common cause of bleeding tendency. To ensure a correct diagnosis, specialized laboratory analyses are necessary. This study reports the results of an upfront diagnostic strategy using targeted whole exome sequencing. In total, 156 patients with a significant bleeding assessment tool score participated in the study, of which a third had thrombocytope...
متن کامل