Feature Reduction in Biosignal Processing

نویسندگان

  • Martin Golz
  • David Sommer
چکیده

Feature reduction is common in biosignal analysis, especially in case of quantitative EEG analysis. Mostly, summation in the spectral domain is applied to reduce the number of estimated power spectral density values, which gains between four and twelve band power values. Depending on the problem, on signals under analysis and on methods used for further processing it is an open question if such a strong decrease in the number of features is optimal. Modern Soft Computing methods offer the feasibility of processing a large amount of different features without considerable performance deteriorations. In this paper we apply such methods and compare empirically the case of no feature reduction to four variants of feature reduction. Our data set consist of more than 3,700 examples of microsleep events experienced by young adults in an overnight driving simulation study. More than 4,600 features were extracted from seven EEG and two EOG channels utilizing the modified periodogram method. Results showed that summation in many fixed bands, or in fewer, but freely optimized bands is more optimal than no reduction, or strong reduction to four bands commonly selected in EEG analysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Applying Genetic Algorithm to EEG Signals for Feature Reduction in Mental Task Classification

Brain-Computer interface systems are a new mode of communication which provides a new path between brain and its surrounding by processing EEG signals measured in different mental states.  Therefore, choosing suitable features is demanded for a good BCI communication. In this regard, one of the points to be considered is feature vector dimensionality. We present a method of feature reduction us...

متن کامل

Biosignals Analysis and its Application in a Performance Setting - Towards the Development of an Emotional-Imaging Generator

The study of automatic emotional awareness of human subjects by computerized systems is a promising avenue of research in human-computer interaction with profound implications in media arts and theatrical performance. A novel emotion elicitation paradigm focused on self-generated stimuli is applied here for a heightened degree of confidence in collected physiological data. This is coupled with ...

متن کامل

A User Independent, Biosignal Based, Emotion Recognition Method

A physiological signal based emotion recognition method, for the assessment of three emotional classes: happiness, disgust and fear, is presented. Our approach consists of four steps: (i) biosignal acquisition, (ii) biosignal preprocessing and feature extraction, (iii) feature selection and (iv) classification. The input signals are facial electromyograms, the electrocardiogram, the respiration...

متن کامل

Supervised Feature Extraction of Face Images for Improvement of Recognition Accuracy

Dimensionality reduction methods transform or select a low dimensional feature space to efficiently represent the original high dimensional feature space of data. Feature reduction techniques are an important step in many pattern recognition problems in different fields especially in analyzing of high dimensional data. Hyperspectral images are acquired by remote sensors and human face images ar...

متن کامل

Coarse Grained Reconfigurable Array Based Architecture for Low Power Real-Time Seizure Detection

There is increasing research and commercial interest in miniature on-body and implantable devices for continuous real-time biosignal monitoring. A key challenge in realizing this vision is in implementation of biosignal processing algorithms with acceptably low energy consumption. In this article, we investigate implementation of the REACT algorithm for real-time epileptic seizure detection on ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008