Fabrication and photoresponse of ZnO nanowires/CuO coaxial heterojunction

نویسندگان

  • Jen-Kai Wu
  • Wei-Jen Chen
  • Yuan Huei Chang
  • Yang Fang Chen
  • Da-Ren Hang
  • Chi-Te Liang
  • Jing-Yu Lu
چکیده

The fabrication and properties of n-ZnO nanowires/p-CuO coaxial heterojunction (CH) with a photoresist (PR) blocking layer are reported. In our study, c-plane wurtzite ZnO nanowires were grown by aqueous chemical method, and monoclinic CuO (111) was then coated on the ZnO nanowires by electrochemical deposition to form CH. To improve the device performance, a PR layer was inserted between the ZnO buffer layer and the CuO film to serve as a blocking layer to block the leakage current. Structural investigations of the CH indicate that the sample has good crystalline quality. It was found that our refined structure possesses a better rectifying ratio and smaller reverse leakage current. As there is a large on/off ratio between light on and off and the major light response is centered at around 424 nm, the experimental results suggest that the PR-inserted ZnO/CuO CH can be used as a good narrow-band blue light detector.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrical and photoresponse properties of Co3O4 nanowires

Related Articles A comparative study of ultraviolet photoconductivity relaxation in zinc oxide (ZnO) thin films deposited by different techniques J. Appl. Phys. 111, 102809 (2012) Effect of defect bands in β-In2S3 thin films J. Appl. Phys. 111, 093714 (2012) Photovoltaic properties of the p-CuO/n-Si heterojunction prepared through reactive magnetron sputtering J. Appl. Phys. 111, 084507 (2012) ...

متن کامل

Ultrasensitive non-enzymatic glucose sensor based on three-dimensional network of ZnO-CuO hierarchical nanocomposites by electrospinning

Three-dimensional (3D) porous ZnO-CuO hierarchical nanocomposites (HNCs) nonenzymatic glucose electrodes with different thicknesses were fabricated by coelectrospinning and compared with 3D mixed ZnO/CuO nanowires (NWs) and pure CuO NWs electrodes. The structural characterization revealed that the ZnO-CuO HNCs were composed of the ZnO and CuO mixed NWs trunk (~200 nm), whose outer surface was a...

متن کامل

Low temperature solution-processed high performance photodiode based on Si-ZnO core-shell structure.

Radial heterojunction photodiodes based on a silicon nanowire arrays (SiNWs)-zinc oxide (ZnO) core-shell structure is demonstrated in this report. The heterojunction can be constructed by spin-coating ZnO nanoparticles onto SiNWs and a low temperature post-annealing process (<270 °C). The photodiode displays typical diode rectifying characteristics with an ideality factor of as low as 1.28, and...

متن کامل

Fabrication of heterogeneous nanomaterial array by programmable heating and chemical supply within microfluidic platform towards multiplexed gas sensing application

A facile top-down/bottom-up hybrid nanofabrication process based on programmable temperature control and parallel chemical supply within microfluidic platform has been developed for the all liquid-phase synthesis of heterogeneous nanomaterial arrays. The synthesized materials and locations can be controlled by local heating with integrated microheaters and guided liquid chemical flow within mic...

متن کامل

Fabrication and characterization of ZnO nanowires based UV photodiodes

A heterojunction of n-type zinc oxide (ZnO) nanowires and p-type silicon has been successfully constructed to demonstrate ultraviolet (UV) photodiodes. The prototype device consists of naturally doped n-type ZnO nanowires grown on top of a (1 0 0) p-silicon substrate by the bottom-up growth process. The diameter of the nanowires is in the range of 70–120 nm, and the length is controlled by the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013