Non-Kähler symplectic manifolds with toric symmetries

نویسندگان

  • Yi Lin
  • Alvaro Pelayo
چکیده

Drawing on the classification of symplectic manifolds with cosiotropic principal orbits by Duistermaat and Pelayo, in this note we exhibit families of compact symplectic manifolds, such that (i) no two manifolds in a family are homotopically equivalent, (ii) each manifold in each family possesses Hamiltonian, and non-Hamiltonian, toric symmetries, (iii) each manifold has odd first Betti number and hence it is not a Kähler manifold. This can be viewed as an application of the aforementioned classification.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kähler Geometry of Toric Manifolds in Symplectic Coordinates

A theorem of Delzant states that any symplectic manifold (M,ω) of dimension 2n, equipped with an effective Hamiltonian action of the standard n-torus Tn = Rn/2πZn, is a smooth projective toric variety completely determined (as a Hamiltonian Tn-space) by the image of the moment map φ : M → Rn, a convex polytope P = φ(M) ⊂ Rn. In this paper we show, using symplectic (action-angle) coordinates on ...

متن کامل

Examples of Non-kähler Hamiltonian Torus Actions

An important question with a rich history is the extent to which the symplectic category is larger than the Kähler category. Many interesting examples of non-Kähler symplectic manifolds have been constructed [T] [M] [G]. However, sufficiently large symmetries can force a symplectic manifolds to be Kähler [D] [Kn]. In this paper, we solve several outstanding problems by constructing the first sy...

متن کامل

Non-compact Symplectic Toric Manifolds

The paradigmatic result in symplectic toric geometry is the paper of Delzant that classifies compact connected symplectic manifolds with effective completely integrable torus actions, the so called (compact) symplectic toric manifolds. The moment map induces an embedding of the quotient of the manifold by the torus action into the dual of the Lie algebra of the torus; its image is a simple unim...

متن کامل

Symplectic fillability of toric contact manifolds

According to Lerman, compact connected toric contact 3-manifolds with a non-free toric action whose moment cone spans an angle greater than π are overtwisted, thus non-fillable. In contrast, we show that all compact connected toric contact manifolds in dimension greater than three are weakly symplectically fillable and most of them are strongly symplectically fillable. The proof is based on the...

متن کامل

Remarks on Lagrangian Intersections in Toric Manifolds

We consider two natural Lagrangian intersection problems in the context of symplectic toric manifolds: displaceability of torus orbits and of a torus orbit with the real part of the toric manifold. Our remarks address the fact that one can use simple cartesian product and symplectic reduction considerations to go from basic examples to much more sophisticated ones. We show in particular how rig...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009