Dissecting virulence: systematic and functional analyses of a pathogenicity island.
نویسندگان
چکیده
Bacterial pathogenicity islands (PAI) often encode both effector molecules responsible for disease and secretion systems that deliver these effectors to host cells. Human enterohemorrhagic Escherichia coli (EHEC), enteropathogenic E. coli, and the mouse pathogen Citrobacter rodentium (CR) possess the locus of enterocyte effacement (LEE) PAI. We systematically mutagenized all 41 CR LEE genes and functionally characterized these mutants in vitro and in a murine infection model. We identified 33 virulence factors, including two virulence regulators and a hierarchical switch for type III secretion. In addition, 7 potential type III effectors encoded outside the LEE were identified by using a proteomics approach. These non-LEE effectors are encoded by three uncharacterized PAIs in EHEC O157, suggesting that these PAIs act cooperatively with the LEE in pathogenesis. Our findings provide significant insights into bacterial virulence mechanisms and disease.
منابع مشابه
In vivo genetic analysis indicates that PhoP-PhoQ and the Salmonella pathogenicity island 2 type III secretion system contribute independently to Salmonella enterica serovar Typhimurium virulence.
Many virulence factors are required for Salmonella enterica serovar Typhimurium to replicate intracellularly and proliferate systemically within mice. In this work, we have carried out genetic analyses in vivo to determine the functional relationship between two major virulence factors necessary for systemic infection by S. enterica serovar Typhimurium: the Salmonella pathogenicity island 2 (SP...
متن کاملYersinia high-pathogenicity island contributes to virulence in Escherichia coli causing extraintestinal infections.
The Yersinia high-pathogenicity island (HPI) encodes an iron uptake system mediated by the siderophore yersiniabactin (Ybt) and confers the virulence of highly pathogenic Yersinia species. This HPI is also widely distributed in human pathogenic members of the family of Enterobacteriaceae, above all in extraintestinal pathogenic Escherichia coli (ExPEC). In the present study we demonstrate a hig...
متن کاملFunctional Characterization of the Type III Secretion ATPase SsaN Encoded by Salmonella Pathogenicity Island 2
A type III secretion system (T3SS) is utilized by a large number of gram-negative bacteria to deliver effectors directly into the cytosol of eukaryotic host cells. One essential component of a T3SS is an ATPase that catalyzes the unfolding of proteins, which is followed by the translocation of effectors through an injectisome. Here we demonstrate a functional role of the ATPase SsaN, a componen...
متن کاملCooperation of Salmonella pathogenicity islands 1 and 4 is required to breach epithelial barriers.
Invasion is an important microbial virulence strategy to overcome the barrier formed by polarized epithelial cells. Salmonella enterica is a food-borne pathogen that deploys a type III secretion system for the manipulation of the actin cytoskeleton and to trigger internalization into epithelial cells. Here we show that this function is not sufficient to enter polarized cells and report that pen...
متن کاملThe Salmonella pathogenicity island-1 type III secretion system.
Salmonella pathogenicity island 1 (SPI1) encodes a type III secretion system that is required for virulence during the intestinal phase of infection. The expression of SPI1 genes is controlled by many global regulatory pathways that affect the expression/activity of transcriptional regulators encoded on SPI1.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 101 10 شماره
صفحات -
تاریخ انتشار 2004